Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1025531

REPD: Source Code Defect Prediction As Anomaly Detection


Afrić, Petar; Šikić, Lucija; Kurdija, Adrian Satja; Delač, Goran; Šilić, Marin
REPD: Source Code Defect Prediction As Anomaly Detection // 2019 IEEE 19th International Conference on Software Quality, Reliability and Security Companion (QRS-C)
Sofija, Bugarska, 2019. str. 227-234 doi:10.1109/QRS-C.2019.00052 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)


CROSBI ID: 1025531 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
REPD: Source Code Defect Prediction As Anomaly Detection

Autori
Afrić, Petar ; Šikić, Lucija ; Kurdija, Adrian Satja ; Delač, Goran ; Šilić, Marin

Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni

Skup
2019 IEEE 19th International Conference on Software Quality, Reliability and Security Companion (QRS-C)

Mjesto i datum
Sofija, Bugarska, 22.07.2019. - 26.07.2019

Vrsta sudjelovanja
Predavanje

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
Defect prediction ; Program analysis ; Binary classification

Sažetak
In this paper, we present a novel approach to defect prediction within project source code. Since defect prediction datasets are typically imbalanced, and there are few defective examples, we treat defect prediction as anomaly detection. We present our Reconstruction Error Probability Distribution (REPD) model and compare it on five different datasets to five standardly used models: Gaussian Naive Bayes, Logistic regression, k- nearest-neighbors, decision tree, and SVM. For the main performance results we use F1-scores. Using statistical means, we show that our model produces significantly better results, improving F1-score up to 10.11%.

Izvorni jezik
Engleski

Znanstvena područja
Računarstvo



POVEZANOST RADA


Projekti:
KK.01.1.1.01.0009 - Napredne metode i tehnologije u znanosti o podatcima i kooperativnim sustavima (EK )
KK.01.2.1.01.0111
HRZZ-IP-2018-01-6423 - Pouzdani kompozitni primjenski sustavi zasnovani na web uslugama (RELS) (Srbljić, Siniša, HRZZ ) ( CroRIS)

Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb

Poveznice na cjeloviti tekst rada:

doi ieeexplore.ieee.org

Citiraj ovu publikaciju:

Afrić, Petar; Šikić, Lucija; Kurdija, Adrian Satja; Delač, Goran; Šilić, Marin
REPD: Source Code Defect Prediction As Anomaly Detection // 2019 IEEE 19th International Conference on Software Quality, Reliability and Security Companion (QRS-C)
Sofija, Bugarska, 2019. str. 227-234 doi:10.1109/QRS-C.2019.00052 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
Afrić, P., Šikić, L., Kurdija, A., Delač, G. & Šilić, M. (2019) REPD: Source Code Defect Prediction As Anomaly Detection. U: 2019 IEEE 19th International Conference on Software Quality, Reliability and Security Companion (QRS-C) doi:10.1109/QRS-C.2019.00052.
@article{article, author = {Afri\'{c}, Petar and \v{S}iki\'{c}, Lucija and Kurdija, Adrian Satja and Dela\v{c}, Goran and \v{S}ili\'{c}, Marin}, year = {2019}, pages = {227-234}, DOI = {10.1109/QRS-C.2019.00052}, keywords = {Defect prediction, Program analysis, Binary classification}, doi = {10.1109/QRS-C.2019.00052}, title = {REPD: Source Code Defect Prediction As Anomaly Detection}, keyword = {Defect prediction, Program analysis, Binary classification}, publisherplace = {Sofija, Bugarska} }
@article{article, author = {Afri\'{c}, Petar and \v{S}iki\'{c}, Lucija and Kurdija, Adrian Satja and Dela\v{c}, Goran and \v{S}ili\'{c}, Marin}, year = {2019}, pages = {227-234}, DOI = {10.1109/QRS-C.2019.00052}, keywords = {Defect prediction, Program analysis, Binary classification}, doi = {10.1109/QRS-C.2019.00052}, title = {REPD: Source Code Defect Prediction As Anomaly Detection}, keyword = {Defect prediction, Program analysis, Binary classification}, publisherplace = {Sofija, Bugarska} }

Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font