Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1025451

Uncertainty Quantification and Robust Optimization in Engineering


Kumar, D.; Alam, S. B.; Vučinić, Dean; Lacor, C.
Uncertainty Quantification and Robust Optimization in Engineering // Advances in Visualization and Optimization Techniques for Multidisciplinary Research / Vucinic, Dean ; Rodrigues Leta, Fabiana ; Janardhanan, Sheeja (ur.).
Singapur: Springer, 2019. str. 63-93 doi:10.1007/978-981-13-9806-3_3


CROSBI ID: 1025451 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Uncertainty Quantification and Robust Optimization in Engineering

Autori
Kumar, D. ; Alam, S. B. ; Vučinić, Dean ; Lacor, C.

Vrsta, podvrsta i kategorija rada
Poglavlja u knjigama, znanstveni

Knjiga
Advances in Visualization and Optimization Techniques for Multidisciplinary Research

Urednik/ci
Vucinic, Dean ; Rodrigues Leta, Fabiana ; Janardhanan, Sheeja

Izdavač
Springer

Grad
Singapur

Godina
2019

Raspon stranica
63-93

ISBN
978-981-13-9805-6

ISSN
2195-4356

Ključne riječi
CFD ; Uncertainties ; Non-intrusive ; Polynomial chaos ; Robust optimization

Sažetak
The application and use of engineering components such as engines, wings, or complete airplanes are all subject to uncertainties, either of operational nature (variations in speed, angle of attack, pressure, etc) or of geometrical nature (manufacturing tolerances or uncertainties due to wearing). These uncertainties can have an important effect on the performance (output) of these components. The effect of these uncertain parameters should be quantified and included in the final solution to assure and improve the quality of the results. Polynomial chaos is a recent methodology to account for uncertainties that can be described by a distribution function. The method allows to obtain the distribution of the output for given input distributions. Over the last decade, with increasing computational resources and hardware power, design optimization is receiving more and more interest in aeronautical applications. Due to the uncertainties in a design process, the objective is also uncertain. Robust optimization is an extension of conventional optimization where uncertainties are also included in the design procedure. Using polynomial chaos expansion, the uncertain objective can be characterized by its mean and its variance. Therefore, it becomes a multi-objective problem and gradient based optimization requires the gradient of both quantities. These gradients can be obtained from the polynomial chaos expansion of the gradient of the objective. In this chapter, first, a brief introduction to polynomial chaos approach for uncertainty quantification is provided. Further its formulation with adjoint methods is described for gradient based robust optimization. The approach is applied to the optimal shape design of a transonic airfoil under uncertainties.

Izvorni jezik
Engleski

Znanstvena područja
Elektrotehnika, Računarstvo, Interdisciplinarne tehničke znanosti



POVEZANOST RADA


Ustanove:
Fakultet elektrotehnike, računarstva i informacijskih tehnologija Osijek

Profili:

Avatar Url Dean Vučinić (autor)

Avatar Url Ivan Kumar (autor)

Poveznice na cjeloviti tekst rada:

doi

Citiraj ovu publikaciju:

Kumar, D.; Alam, S. B.; Vučinić, Dean; Lacor, C.
Uncertainty Quantification and Robust Optimization in Engineering // Advances in Visualization and Optimization Techniques for Multidisciplinary Research / Vucinic, Dean ; Rodrigues Leta, Fabiana ; Janardhanan, Sheeja (ur.).
Singapur: Springer, 2019. str. 63-93 doi:10.1007/978-981-13-9806-3_3
Kumar, D., Alam, S., Vučinić, D. & Lacor, C. (2019) Uncertainty Quantification and Robust Optimization in Engineering. U: Vucinic, D., Rodrigues Leta, F. & Janardhanan, S. (ur.) Advances in Visualization and Optimization Techniques for Multidisciplinary Research. Singapur, Springer, str. 63-93 doi:10.1007/978-981-13-9806-3_3.
@inbook{inbook, author = {Kumar, D. and Alam, S. B. and Vu\v{c}ini\'{c}, Dean and Lacor, C.}, year = {2019}, pages = {63-93}, DOI = {10.1007/978-981-13-9806-3\_3}, keywords = {CFD, Uncertainties, Non-intrusive, Polynomial chaos, Robust optimization}, doi = {10.1007/978-981-13-9806-3\_3}, isbn = {978-981-13-9805-6}, issn = {2195-4356}, title = {Uncertainty Quantification and Robust Optimization in Engineering}, keyword = {CFD, Uncertainties, Non-intrusive, Polynomial chaos, Robust optimization}, publisher = {Springer}, publisherplace = {Singapur} }
@inbook{inbook, author = {Kumar, D. and Alam, S. B. and Vu\v{c}ini\'{c}, Dean and Lacor, C.}, year = {2019}, pages = {63-93}, DOI = {10.1007/978-981-13-9806-3\_3}, keywords = {CFD, Uncertainties, Non-intrusive, Polynomial chaos, Robust optimization}, doi = {10.1007/978-981-13-9806-3\_3}, isbn = {978-981-13-9805-6}, issn = {2195-4356}, title = {Uncertainty Quantification and Robust Optimization in Engineering}, keyword = {CFD, Uncertainties, Non-intrusive, Polynomial chaos, Robust optimization}, publisher = {Springer}, publisherplace = {Singapur} }

Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font