Pregled bibliografske jedinice broj: 1023090
Spline-Like Chebyshev Polynomial Representation for Compressed Sensing
Spline-Like Chebyshev Polynomial Representation for Compressed Sensing // Proceedings of the 11th International Symposium on Image and Signal Processing and Analysis / Lončarić, Sven ; Bregović, Robert ; Carli, Marco ; Subašić, Marko (ur.).
Zagreb: Sveučilište u Zagrebu, 2019. str. 135-140 doi:10.1109/ISPA.2019.8868926 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 1023090 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Spline-Like Chebyshev Polynomial Representation for Compressed Sensing
Autori
Vlašić, Tin ; Ivanković, Jelena ; Tafro, Azra ; Seršić, Damir
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
Proceedings of the 11th International Symposium on Image and Signal Processing and Analysis
/ Lončarić, Sven ; Bregović, Robert ; Carli, Marco ; Subašić, Marko - Zagreb : Sveučilište u Zagrebu, 2019, 135-140
Skup
11th International Symposium on Image and Signal Processing and Analysis (ISPA 2019)
Mjesto i datum
Dubrovnik, Hrvatska, 23.09.2019. - 25.09.2019
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
polynomial approximation ; parametric signal model ; analog-to-information conversion ; splines
Sažetak
Compressed sensing is a technique for signal sampling below the Nyquist rate, based on the assumption that the signal is sparse in some transform domain. The acquired signal is represented in a compressed form that is appropriate for storage, transmission and further processing. In this paper, use of the Chebyshev polynomials of the first kind on intervals for an efficient representation of one-dimensional, continuoustime signals is proposed. To avoid boundary artifacts, a desired number of derivatives are equalized on each interval end in a spline-like fashion. Unlike splines, the proposed system of equations is underdetermined to provide a necessary degree of freedom for achieving sparsity using the l1 optimization. The obtained parametric model fits into the compressed sensing setup and offers a new paradigm for efficient processing of analog data on a digital computer. Simulation results of the proposed measurement system and an example of data processing are given to prove its potential.
Izvorni jezik
Engleski
Znanstvena područja
Elektrotehnika, Računarstvo
POVEZANOST RADA
Projekti:
KK.01.1.1.01.0009 - Napredne metode i tehnologije u znanosti o podatcima i kooperativnim sustavima (EK )
HRZZ-IP-2014-09-2625 - Iznad Nyquistove granice (BeyondLimit) (Seršić, Damir, HRZZ ) ( CroRIS)
Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb