Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1022603

Automatic Music Transcription for Traditional Woodwind Instruments Sopele


Skoki, Arian; Ljubić, Sandi; Lerga, Jonatan; Štajduhar, Ivan
Automatic Music Transcription for Traditional Woodwind Instruments Sopele // Pattern recognition letters, 128 (2019), 340-347 doi:10.1016/j.patrec.2019.09.024 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1022603 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Automatic Music Transcription for Traditional Woodwind Instruments Sopele

Autori
Skoki, Arian ; Ljubić, Sandi ; Lerga, Jonatan ; Štajduhar, Ivan

Izvornik
Pattern recognition letters (0167-8655) 128 (2019); 340-347

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
automatic music transcription ; traditional woodwind instrument ; sopele ; discrete Fourier transform ; machine learning

Sažetak
Sopela is a traditional hand-made woodwind instrument, commonly played in pair, characteristic to the Istrian peninsula in western Croatia. Its piercing sound, accompanied by two-part singing in the hexatonic Istrian scale, is registered in the UNESCO Representative List of the Intangible Cultural Heritage of Humanity. This paper presents an insight study of automatic music transcription (AMT) for sopele tunes. The process of converting audio inputs into human- readable musical scores involves multi-pitch detection and note tracking. The proposed solution supports this process by utilising frequency-feature extraction, supervised machine learning (ML) algorithms, and postprocessing heuristics. We determined the most favourable tone-predicting model by applying grid search for two state-of-the-art ML techniques, optionally coupled with frequency-feature extraction. The model achieved promising transcription accuracy for both monophonic and polyphonic music sources encompassed in the originally developed dataset. In addition, we developed a proof-of- concept AMT system, comprised of a client mobile application and a server-side API. While the mobile application records, tags and uploads audio sources, the back-end server applies the presented procedure for converting recorded music into a common notation to be delivered as a transcription result. We thus demonstrate how collecting and preserving traditional sopele music, performed in real- life occasions, can be effortlessly accomplished on-the-go.

Izvorni jezik
Engleski

Znanstvena područja
Računarstvo



POVEZANOST RADA


Ustanove:
Tehnički fakultet, Rijeka

Profili:

Avatar Url Arian Skoki (autor)

Avatar Url Jonatan Lerga (autor)

Avatar Url Sandi Ljubić (autor)

Avatar Url Ivan Štajduhar (autor)

Poveznice na cjeloviti tekst rada:

doi

Citiraj ovu publikaciju:

Skoki, Arian; Ljubić, Sandi; Lerga, Jonatan; Štajduhar, Ivan
Automatic Music Transcription for Traditional Woodwind Instruments Sopele // Pattern recognition letters, 128 (2019), 340-347 doi:10.1016/j.patrec.2019.09.024 (međunarodna recenzija, članak, znanstveni)
Skoki, A., Ljubić, S., Lerga, J. & Štajduhar, I. (2019) Automatic Music Transcription for Traditional Woodwind Instruments Sopele. Pattern recognition letters, 128, 340-347 doi:10.1016/j.patrec.2019.09.024.
@article{article, author = {Skoki, Arian and Ljubi\'{c}, Sandi and Lerga, Jonatan and \v{S}tajduhar, Ivan}, year = {2019}, pages = {340-347}, DOI = {10.1016/j.patrec.2019.09.024}, keywords = {automatic music transcription, traditional woodwind instrument, sopele, discrete Fourier transform, machine learning}, journal = {Pattern recognition letters}, doi = {10.1016/j.patrec.2019.09.024}, volume = {128}, issn = {0167-8655}, title = {Automatic Music Transcription for Traditional Woodwind Instruments Sopele}, keyword = {automatic music transcription, traditional woodwind instrument, sopele, discrete Fourier transform, machine learning} }
@article{article, author = {Skoki, Arian and Ljubi\'{c}, Sandi and Lerga, Jonatan and \v{S}tajduhar, Ivan}, year = {2019}, pages = {340-347}, DOI = {10.1016/j.patrec.2019.09.024}, keywords = {automatic music transcription, traditional woodwind instrument, sopele, discrete Fourier transform, machine learning}, journal = {Pattern recognition letters}, doi = {10.1016/j.patrec.2019.09.024}, volume = {128}, issn = {0167-8655}, title = {Automatic Music Transcription for Traditional Woodwind Instruments Sopele}, keyword = {automatic music transcription, traditional woodwind instrument, sopele, discrete Fourier transform, machine learning} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font