Pregled bibliografske jedinice broj: 1022287
Cross-Domain Detection of Abusive Language Online
Cross-Domain Detection of Abusive Language Online // Proceedings of the 2nd Workshop on Abusive Language Online (ALW2)
Bruxelles, Belgija: Association for Computational Linguistics (ACL), 2018. str. 132-137 doi:10.18653/v1/w18-5117 (poster, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 1022287 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Cross-Domain Detection of Abusive Language Online
Autori
Karan, Mladen ; Šnajder, Jan
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
Proceedings of the 2nd Workshop on Abusive Language Online (ALW2)
/ - : Association for Computational Linguistics (ACL), 2018, 132-137
Skup
Association for Computational Linguistics, Second Workshop on Abusive Language Online (ALW2)
Mjesto i datum
Bruxelles, Belgija, 31.10.2018. - 04.11.2018
Vrsta sudjelovanja
Poster
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
domain adaptation, abusive language
Sažetak
We investigate to what extent the models trained to detect general abusive language generalize between different datasets labeled with different abusive language types. To this end, we compare the cross-domain performance of simple classification models on nine different datasets, finding that the models fail to generalize to out-domain datasets and that having at least some in-domain data is important. We also show that using the frustratingly simple domain adaptation (Daume III, 2007) in most cases improves the results over indomain training, especially when used to augment a smaller dataset with a larger one.
Izvorni jezik
Engleski
Znanstvena područja
Računarstvo
POVEZANOST RADA
Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb