Pregled bibliografske jedinice broj: 1022284
Triples and quadruples which are D(n)-sets for several n's
Triples and quadruples which are D(n)-sets for several n's // 24th Central European Number Theory Conference
Komarno, 2019. str. 13-13 (predavanje, podatak o recenziji nije dostupan, sažetak, znanstveni)
CROSBI ID: 1022284 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Triples and quadruples which are D(n)-sets for
several n's
Autori
Dujella, Andrej
Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, znanstveni
Izvornik
24th Central European Number Theory Conference
/ - Komarno, 2019, 13-13
Skup
24th Central European Number Theory Conference
Mjesto i datum
Komárno, Slovačka, 02.09.2019. - 06.09.2019
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Podatak o recenziji nije dostupan
Ključne riječi
Diophantine m-tuples
Sažetak
For a nonzero integer n, a set of distinct nonzero integers {; ; a_1, a_2, ... , a_m}; ; such that a_ia_j + n is a perfect square for all 1 <= i < j <= m, is called a Diophantine m-tuple with the property D(n) or simply a D(n)-set. D(1)-sets are known as Diophantine m-tuples. It is natural to ask if there exists a Diophantine m-tuple (i.e. D(1)-set) which is also a D(n)-set for some n <> 1. For example, {; ; 8, 21, 55}; ; is a D(1) and D(4321)-triple, while {; ; 1, 8, 120}; ; is a D(1) and D(721)- triple. We will present infinite families of Diophantine triples {; ; a, b, c}; ; which are also D(n)-sets for two distinct n's with n <> 1, as well as some Diophantine triples which are also D(n)-sets for three distinct n's with n <> 1. We will consider similar problem with quadruples and we will show that there are infinitely many essentially different quadruples which are simultaneously D(n_1)-quadruples and D(n_2)-quadruples with n_1 <> n_2. This is joint work with Nikola Adžaga, Dijana Kreso, Vinko Petričević and Petra Tadić.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Projekti:
HRZZ-IP-2018-01-1313 - Diofantska geometrija i primjene (DIOPHANT) (Kazalicki, Matija, HRZZ - 2018-01) ( CroRIS)
--KK.01.1.1.01.0004 - Provedba vrhunskih istraživanja u sklopu Znanstvenog centra izvrsnosti za kvantne i kompleksne sustave te reprezentacije Liejevih algebri (QuantiXLie) (Buljan, Hrvoje; Pandžić, Pavle) ( CroRIS)
Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb,
Prirodoslovno-matematički fakultet, Zagreb
Profili:
Andrej Dujella
(autor)