Pregled bibliografske jedinice broj: 1021549
Adaptive Thresholding in Extracting Useful Information from Noisy Time-Frequency Distributions
Adaptive Thresholding in Extracting Useful Information from Noisy Time-Frequency Distributions // 11th International Symposium on Image and Signal Processing and Analysis
Dubrovnik, Hrvatska, 2019. str. 1-6 doi:10.1109/ISPA.2019.8868836 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 1021549 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Adaptive Thresholding in Extracting Useful
Information from Noisy Time-Frequency Distributions
Autori
Saulig, Nicoletta ; Lerga, Jonatan ; Baracskai, Zlatko ; Daković, Miloš
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
11th International Symposium on Image and Signal Processing and Analysis
/ - , 2019, 1-6
Skup
11th International Symposium on Image and Signal Processing and Analysis (ISPA 2019)
Mjesto i datum
Dubrovnik, Hrvatska, 23.09.2019. - 25.09.2019
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
Time-frequency distributions ; Threshold ; K-means ; Intersection of confidence intervals (ICI) rule
Sažetak
This paper provides an analysis of the performance of an automatic method for extraction of useful information content from time-frequency distributions of nonstationary signals in dependence on the selected time- frequency method. The tested algorithm for the extraction of the signal components (useful information) from the noisy mixture is based on an initial segmentation of the time-frequency distribution which provides a fixed number of data classes. The normalized energies of the different classes are used as input to a statistical test which produces two outputs: ‘useful information” classes and ‘noise” classes, respectively. The quantity used as indicator of the class type, being the normalized energy of one class, is highly dependent on the time-frequency kernel filter. This paper reports the results of the proposed method applied to three well performing time- frequency methods, the Smoothed-Pseudo Wigner- Ville distribution, the Choi-Williams distribution, and the Modified-B distribution. The performance comparison attests the method’s robustness for the different kernel filters, in various SNRs.
Izvorni jezik
Engleski
Znanstvena područja
Elektrotehnika, Računarstvo
POVEZANOST RADA
Projekti:
IP-2018-01-3739 - Sustav potpore odlučivanju za zeleniju i sigurniju plovidbu brodova (DESSERT) (Prpić-Oršić, Jasna, HRZZ - 2018-01) ( CroRIS)
Ustanove:
Tehnički fakultet, Rijeka,
Sveučilište Jurja Dobrile u Puli