Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1021549

Adaptive Thresholding in Extracting Useful Information from Noisy Time-Frequency Distributions


Saulig, Nicoletta; Lerga, Jonatan; Baracskai, Zlatko; Daković, Miloš
Adaptive Thresholding in Extracting Useful Information from Noisy Time-Frequency Distributions // 11th International Symposium on Image and Signal Processing and Analysis
Dubrovnik, Hrvatska, 2019. str. 1-6 doi:10.1109/ISPA.2019.8868836 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)


CROSBI ID: 1021549 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Adaptive Thresholding in Extracting Useful Information from Noisy Time-Frequency Distributions

Autori
Saulig, Nicoletta ; Lerga, Jonatan ; Baracskai, Zlatko ; Daković, Miloš

Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni

Izvornik
11th International Symposium on Image and Signal Processing and Analysis / - , 2019, 1-6

Skup
11th International Symposium on Image and Signal Processing and Analysis (ISPA 2019)

Mjesto i datum
Dubrovnik, Hrvatska, 23.09.2019. - 25.09.2019

Vrsta sudjelovanja
Predavanje

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
Time-frequency distributions ; Threshold ; K-means ; Intersection of confidence intervals (ICI) rule

Sažetak
This paper provides an analysis of the performance of an automatic method for extraction of useful information content from time-frequency distributions of nonstationary signals in dependence on the selected time- frequency method. The tested algorithm for the extraction of the signal components (useful information) from the noisy mixture is based on an initial segmentation of the time-frequency distribution which provides a fixed number of data classes. The normalized energies of the different classes are used as input to a statistical test which produces two outputs: ‘useful information” classes and ‘noise” classes, respectively. The quantity used as indicator of the class type, being the normalized energy of one class, is highly dependent on the time-frequency kernel filter. This paper reports the results of the proposed method applied to three well performing time- frequency methods, the Smoothed-Pseudo Wigner- Ville distribution, the Choi-Williams distribution, and the Modified-B distribution. The performance comparison attests the method’s robustness for the different kernel filters, in various SNRs.

Izvorni jezik
Engleski

Znanstvena područja
Elektrotehnika, Računarstvo



POVEZANOST RADA


Projekti:
IP-2018-01-3739 - Sustav potpore odlučivanju za zeleniju i sigurniju plovidbu brodova (DESSERT) (Prpić-Oršić, Jasna, HRZZ - 2018-01) ( CroRIS)

Ustanove:
Tehnički fakultet, Rijeka,
Sveučilište Jurja Dobrile u Puli

Profili:

Avatar Url Jonatan Lerga (autor)

Avatar Url Nicoletta Saulig (autor)

Poveznice na cjeloviti tekst rada:

doi www.tfsa.me ieeexplore.ieee.org

Citiraj ovu publikaciju:

Saulig, Nicoletta; Lerga, Jonatan; Baracskai, Zlatko; Daković, Miloš
Adaptive Thresholding in Extracting Useful Information from Noisy Time-Frequency Distributions // 11th International Symposium on Image and Signal Processing and Analysis
Dubrovnik, Hrvatska, 2019. str. 1-6 doi:10.1109/ISPA.2019.8868836 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
Saulig, N., Lerga, J., Baracskai, Z. & Daković, M. (2019) Adaptive Thresholding in Extracting Useful Information from Noisy Time-Frequency Distributions. U: 11th International Symposium on Image and Signal Processing and Analysis doi:10.1109/ISPA.2019.8868836.
@article{article, author = {Saulig, Nicoletta and Lerga, Jonatan and Baracskai, Zlatko and Dakovi\'{c}, Milo\v{s}}, year = {2019}, pages = {1-6}, DOI = {10.1109/ISPA.2019.8868836}, keywords = {Time-frequency distributions, Threshold, K-means, Intersection of confidence intervals (ICI) rule}, doi = {10.1109/ISPA.2019.8868836}, title = {Adaptive Thresholding in Extracting Useful Information from Noisy Time-Frequency Distributions}, keyword = {Time-frequency distributions, Threshold, K-means, Intersection of confidence intervals (ICI) rule}, publisherplace = {Dubrovnik, Hrvatska} }
@article{article, author = {Saulig, Nicoletta and Lerga, Jonatan and Baracskai, Zlatko and Dakovi\'{c}, Milo\v{s}}, year = {2019}, pages = {1-6}, DOI = {10.1109/ISPA.2019.8868836}, keywords = {Time-frequency distributions, Threshold, K-means, Intersection of confidence intervals (ICI) rule}, doi = {10.1109/ISPA.2019.8868836}, title = {Adaptive Thresholding in Extracting Useful Information from Noisy Time-Frequency Distributions}, keyword = {Time-frequency distributions, Threshold, K-means, Intersection of confidence intervals (ICI) rule}, publisherplace = {Dubrovnik, Hrvatska} }

Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font