Pregled bibliografske jedinice broj: 1021410
Distributed Password Hash Computation on Commodity Heterogeneous Programmable Platforms
Distributed Password Hash Computation on Commodity Heterogeneous Programmable Platforms // 13th USENIX Workshop on Offensive Technologies (WOOT '19)
San Jose (CA), Sjedinjene Američke Države: USENIX Association, 2019. 14, 8 (radionica, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 1021410 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Distributed Password Hash Computation on Commodity
Heterogeneous Programmable Platforms
Autori
Pervan, Branimir ; Knezović, Josip ; Peričin, Katja
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Skup
13th USENIX Workshop on Offensive Technologies (WOOT '19)
Mjesto i datum
San Jose (CA), Sjedinjene Američke Države, 12.08.2019. - 13.08.2019
Vrsta sudjelovanja
Radionica
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
bcrypt ; heterogeneous platform ; programmable logic accelerator ; MPI ; distributed computing ; energy-efficient computing
Sažetak
In this paper, we present the Cool Cracker Cluster cCc: a heterogeneous distributed system for parallel, energy-efficient, and high-speed bcrypt password hash computation. The cluster consists of up to 32 heterogeneous nodes with Zynq-7000-based SoCs featuring a dual-core, general-purpose ARM processor coupled with FPGA programmable logic. Each node uses our custom bcrypt accelerator which executes the most costly parts of the hash computation in programmable logic. We integrated our bcrypt implementation into John the Ripper, an open source password cracking software. Message Passing interface (MPI) support in John the Ripper is used to form a distributed cluster. We tested the cluster, trying different configurations of boards (Zedboards and Pynq boards), salt randomness, and cost parameters finding out that password cracking scales linearly with the number of nodes. In terms of performance (number of computed hashes per second) and energy efficiency (performance per Watt), cCc outperforms current systems based on high-end GPU cards, namely Nvidia Tesla V100, by a factor of 2.72 and 5 respectively.
Izvorni jezik
Engleski
Znanstvena područja
Računarstvo
POVEZANOST RADA
Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb