Pregled bibliografske jedinice broj: 1020133
Photolytic and photocatalytic degradation of nitrofurantoin and its photohydrolytic products
Photolytic and photocatalytic degradation of nitrofurantoin and its photohydrolytic products // Journal of photochemistry and photobiology. A, Chemistry, 386 (2020), 112093-112093 doi:10.1016/j.jphotochem.2019.112093 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 1020133 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Photolytic and photocatalytic degradation of nitrofurantoin and its photohydrolytic products
Autori
Szabó-Bardos, Erzsébet ; Cafuta, Andrea ; Hegedűs, Péter ; Fónagy, Orsolya ; Kiss, Gyula ; Babić, Sandra ; Škorić, Irena ; Horváth, Ottó
Izvornik
Journal of photochemistry and photobiology. A, Chemistry (1010-6030) 386
(2020);
112093-112093
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
nitrofurantoin derivatives ; photocatalysis ; photolysis ; intermediates ; thermal instability
Sažetak
TiO2 based photocatalytic degradation of nitrofurantion (NFT), a widely used drug, and its primary decomposition products, nitrofuraldehyde (NFA) and aminohydantoin (AHD) was investigated and compared to their photolysis in aerobic systems. UV-vis spectrophotometry, pH, IC, and HPLC measurements were applied to follow the changes during the irradiations and subsequently, in the dark. After a fast anti→syn (or trans→cis) photoisomerization of NFT (giving i-NFT), a slower photohydrolysis of both isomers took place upon UV excitation, leading to the formation of NFA and AHD. i-NFT proved to be more reactive than NFT ; it underwent hydrolysis in the dark, too. While photolysis could not totally convert NFT and i-NFT within 120 min, they disappeared within 90 min during the photocatalysis under the same irradiation conditions, along with the degradation of NFA and AHD, and the accumulation of a rather stable intermediate identified as 5- hydroxyfuran- 2- carbaldehyde, formed from NFA. The direct photolysis of NFA also gave this characteristic intermediate along with its several derivatives formed via addition or condensation then redox transformations. They very slowly decomposed in photolysis, while totally disappeared during photocatalysis of NFA, producing polar aliphatic intermediates. Direct irradiation could not convert AHD, while photocatalysis led to its significant degradation in aerobic system. These results indicate that TiO2 based photocatalysis is suitable for the decomposition and mineralization of NFT and their photoderivatives.
Izvorni jezik
Engleski
Znanstvena područja
Kemija, Interdisciplinarne prirodne znanosti
POVEZANOST RADA
Projekti:
HRZZ-IP-2014-09-2353 - Sudbina farmaceutika u okolišu i tijekom naprednih postupaka obrade voda (PharmaFate) (Babić, Sandra, HRZZ - 2014-09) ( CroRIS)
Ustanove:
Fakultet kemijskog inženjerstva i tehnologije, Zagreb
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus
Uključenost u ostale bibliografske baze podataka::
- CA Search (Chemical Abstracts)