Pregled bibliografske jedinice broj: 1018093
Application of SVM models for classification of welded joints
Application of SVM models for classification of welded joints // Tehnički vjesnik : znanstveno-stručni časopis tehničkih fakulteta Sveučilišta u Osijeku, 26 (2019), 2; 533-538 doi:10.17559/TV-20180305095253 (međunarodna recenzija, prethodno priopćenje, znanstveni)
CROSBI ID: 1018093 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Application of SVM models for classification of welded joints
Autori
Marić, Dejan ; Duspara, Miroslav ; Šolić, Tomislav ; Samardžić, Ivan
Izvornik
Tehnički vjesnik : znanstveno-stručni časopis tehničkih fakulteta Sveučilišta u Osijeku (1330-3651) 26
(2019), 2;
533-538
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, prethodno priopćenje, znanstveni
Ključne riječi
Classification ; machine learning ; sound signal ; SVM model ; welding
Sažetak
Classification algorithm based on the support vector method (SVM) was used in this paper to classify welded joints in two categories, one being good (+1) and the other bad (−1) welded joints. The main aim was to classify welded joints by using recorded sound signals obtained within the MAG welding process, to apply appropriate preprocessing methods (filtering, processing) and then to analyze them by the SVM. This paper proves that machine learning, in this specific case of the support vector methods (SVM) with appropriate input conditions, can be efficiently applied in assessment, i.e. in classification of welded joints, as in this case, in two categories. The basic mathematical structure of the machine learning algorithm is presented by means of the support vector method.
Izvorni jezik
Engleski
Znanstvena područja
Strojarstvo
POVEZANOST RADA
Ustanove:
Strojarski fakultet, Slavonski Brod
Citiraj ovu publikaciju:
Časopis indeksira:
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus