Pregled bibliografske jedinice broj: 1017200
A Novel Approach for Signal Sparse Time-Frequency Representations
A Novel Approach for Signal Sparse Time-Frequency Representations // CTBT Science and Technology 2019 Conference
Beč, Austrija, 2019. T3.5-P5, 1 (poster, recenziran, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 1017200 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
A Novel Approach for Signal Sparse Time-Frequency Representations
Autori
Sučić, Viktor ; Volarić, Ivan ; Bokelmann, Goetz ; Le Bras, Ronan
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Skup
CTBT Science and Technology 2019 Conference
Mjesto i datum
Beč, Austrija, 24.06.2019. - 28.06.2019
Vrsta sudjelovanja
Poster
Vrsta recenzije
Recenziran
Ključne riječi
Sparse time–frequency distributions ; Ambiguity function ; Compressive sensing ; Fast intersection of confidence intervals (FICI) rule
Sažetak
By exploiting the fact that most real-life signals are sparse in the time-frequency (TF) domain, a significant suppression of the unwanted cross-terms can be achieved in the signal TF representation. In this work, we propose a sparse reconstruction algorithm, based on the two-step iterative shrinkage/thresholding (TwIST) algorithm, in which the soft-thresholding value is adaptively determined by the Fast Intersection of the Confidence Intervals (FICI) rule. First, the TF region with the lowest mean value is determined, and then the thresholding value is set to the largest sample within the region. Examples of synthetic and real-life signals confirm that the performance of the proposed reconstruction algorithm is competitive to the performance of its state-of-the art counterparts.
Izvorni jezik
Engleski
Znanstvena područja
Elektrotehnika
POVEZANOST RADA
Ustanove:
Tehnički fakultet, Rijeka