Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1016963

Simultaneous Semantic Segmentation and Outlier Detection in Presence of Domain Shift


Bevandić, Petra; Krešo, Ivan; Oršić, Marin; Šegvić, Siniša
Simultaneous Semantic Segmentation and Outlier Detection in Presence of Domain Shift // Lecture Notes on Computer Science, vol. 11824 / Fink, Gernot A. ; Frintrop, Simone ; Jiang, Xiaoyi (ur.).
Dortmund: Springer, 2019. str. 33-47 doi:10.1007/978-3-030-33676-9_3 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)


CROSBI ID: 1016963 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Simultaneous Semantic Segmentation and Outlier Detection in Presence of Domain Shift

Autori
Bevandić, Petra ; Krešo, Ivan ; Oršić, Marin ; Šegvić, Siniša

Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni

Izvornik
Lecture Notes on Computer Science, vol. 11824 / Fink, Gernot A. ; Frintrop, Simone ; Jiang, Xiaoyi - Dortmund : Springer, 2019, 33-47

ISBN
978-3-030-12939-2

Skup
41th German Conference on Pattern Recognition (GCPR 2019)

Mjesto i datum
Dortmund, Njemačka, 10.09.2019. - 13.09.2019

Vrsta sudjelovanja
Predavanje

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
Computer vision, semantic segmentation, outlier detection

Sažetak
Recent success on realistic road driving datasets has increased interest in exploring robust performance in real-world applications. One of the major unsolved problems is to identify image content which can not be reliably recognized with a given inference engine. We therefore study approaches to recover a dense outlier map alongside the primary task with a single forward pass, by relying on shared convolutional features. We consider semantic segmentation as the primary task and perform extensive validation on WildDash val (inliers), LSUN val (outliers), and pasted objects from Pascal VOC 2007 (outliers). We achieve the best validation performance by training to discriminate inliers from pasted ImageNet-1k content, even though ImageNet-1k contains many road-driving pixels, and, at least nominally, fails to account for the full diversity of the visual world. The proposed two-head model performs comparably to the C-way multi-class model trained to predict uniform distribution in outliers, while outperforming several other validated approaches. We evaluate our best two models on the WildDash test dataset and set a new state of the art on the WildDash benchmark.

Izvorni jezik
Engleski

Znanstvena područja
Računarstvo



POVEZANOST RADA


Projekti:
HRZZ I-2433-2014

Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb

Profili:

Avatar Url Ivan Krešo (autor)

Avatar Url Marin Oršić (autor)

Avatar Url Petra Bevandić (autor)

Avatar Url Siniša Šegvić (autor)

Poveznice na cjeloviti tekst rada:

doi arxiv.org

Citiraj ovu publikaciju:

Bevandić, Petra; Krešo, Ivan; Oršić, Marin; Šegvić, Siniša
Simultaneous Semantic Segmentation and Outlier Detection in Presence of Domain Shift // Lecture Notes on Computer Science, vol. 11824 / Fink, Gernot A. ; Frintrop, Simone ; Jiang, Xiaoyi (ur.).
Dortmund: Springer, 2019. str. 33-47 doi:10.1007/978-3-030-33676-9_3 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
Bevandić, P., Krešo, I., Oršić, M. & Šegvić, S. (2019) Simultaneous Semantic Segmentation and Outlier Detection in Presence of Domain Shift. U: Fink, G., Frintrop, S. & Jiang, X. (ur.)Lecture Notes on Computer Science, vol. 11824 doi:10.1007/978-3-030-33676-9_3.
@article{article, author = {Bevandi\'{c}, Petra and Kre\v{s}o, Ivan and Or\v{s}i\'{c}, Marin and \v{S}egvi\'{c}, Sini\v{s}a}, year = {2019}, pages = {33-47}, DOI = {10.1007/978-3-030-33676-9\_3}, keywords = {Computer vision, semantic segmentation, outlier detection}, doi = {10.1007/978-3-030-33676-9\_3}, isbn = {978-3-030-12939-2}, title = {Simultaneous Semantic Segmentation and Outlier Detection in Presence of Domain Shift}, keyword = {Computer vision, semantic segmentation, outlier detection}, publisher = {Springer}, publisherplace = {Dortmund, Njema\v{c}ka} }
@article{article, author = {Bevandi\'{c}, Petra and Kre\v{s}o, Ivan and Or\v{s}i\'{c}, Marin and \v{S}egvi\'{c}, Sini\v{s}a}, year = {2019}, pages = {33-47}, DOI = {10.1007/978-3-030-33676-9\_3}, keywords = {Computer vision, semantic segmentation, outlier detection}, doi = {10.1007/978-3-030-33676-9\_3}, isbn = {978-3-030-12939-2}, title = {Simultaneous Semantic Segmentation and Outlier Detection in Presence of Domain Shift}, keyword = {Computer vision, semantic segmentation, outlier detection}, publisher = {Springer}, publisherplace = {Dortmund, Njema\v{c}ka} }

Časopis indeksira:


  • Scopus


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font