Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1016706

Development of soft sensors for isomerization process based on support vector machine regression and dynamic polynomial models


Herceg, Srečko; Ujević Andrijić, Željka; Bolf, Nenad
Development of soft sensors for isomerization process based on support vector machine regression and dynamic polynomial models // Chemical Engineering Research and Design, 149 (2019), 95-103 doi:10.1016/j.cherd.2019.06.034 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1016706 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Development of soft sensors for isomerization process based on support vector machine regression and dynamic polynomial models

Autori
Herceg, Srečko ; Ujević Andrijić, Željka ; Bolf, Nenad

Izvornik
Chemical Engineering Research and Design (0263-8762) 149 (2019); 95-103

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
Support vector machine (SVM) regression ; Soft sensor ; Dynamic model ; Isomerization process

Sažetak
A novel data-driven soft sensor models for application in the refinery isomerization process are presented. Soft sensor models based on support vector machine regression (SVM) and dynamic polynomial linear Finite Impulse Response (FIR), Autoregressive with Exogenous Inputs (ARX), Output Error (OE), and Nonlinear Dynamic Autoregressive with Exogenous Inputs (NARX) and Hammerstein–Wiener (HW) models are developed. They are intended for continuous estimation of key component contents in the products of a low- temperature isomerization process equipped with a deisohexanizer distillation column. Experimental data from the refinery distributed control system are employed. A significant attention is paid on collection, analysis and pre-processing of the data as well as selection of influential input variables. Developed models were evaluated on an independent data set, and the results show that selected models can reliably estimate the component contents. SVM regression model has better generalization ability in comparison with standard dynamic models on the data set with a low diversity. Developed soft sensors are suitable as analyser replacement and application in the deisohexanizer column advanced process control strategies.

Izvorni jezik
Engleski

Znanstvena područja
Kemijsko inženjerstvo



POVEZANOST RADA


Ustanove:
Fakultet kemijskog inženjerstva i tehnologije, Zagreb

Poveznice na cjeloviti tekst rada:

doi

Citiraj ovu publikaciju:

Herceg, Srečko; Ujević Andrijić, Željka; Bolf, Nenad
Development of soft sensors for isomerization process based on support vector machine regression and dynamic polynomial models // Chemical Engineering Research and Design, 149 (2019), 95-103 doi:10.1016/j.cherd.2019.06.034 (međunarodna recenzija, članak, znanstveni)
Herceg, S., Ujević Andrijić, Ž. & Bolf, N. (2019) Development of soft sensors for isomerization process based on support vector machine regression and dynamic polynomial models. Chemical Engineering Research and Design, 149, 95-103 doi:10.1016/j.cherd.2019.06.034.
@article{article, author = {Herceg, Sre\v{c}ko and Ujevi\'{c} Andriji\'{c}, \v{Z}eljka and Bolf, Nenad}, year = {2019}, pages = {95-103}, DOI = {10.1016/j.cherd.2019.06.034}, keywords = {Support vector machine (SVM) regression, Soft sensor, Dynamic model, Isomerization process}, journal = {Chemical Engineering Research and Design}, doi = {10.1016/j.cherd.2019.06.034}, volume = {149}, issn = {0263-8762}, title = {Development of soft sensors for isomerization process based on support vector machine regression and dynamic polynomial models}, keyword = {Support vector machine (SVM) regression, Soft sensor, Dynamic model, Isomerization process} }
@article{article, author = {Herceg, Sre\v{c}ko and Ujevi\'{c} Andriji\'{c}, \v{Z}eljka and Bolf, Nenad}, year = {2019}, pages = {95-103}, DOI = {10.1016/j.cherd.2019.06.034}, keywords = {Support vector machine (SVM) regression, Soft sensor, Dynamic model, Isomerization process}, journal = {Chemical Engineering Research and Design}, doi = {10.1016/j.cherd.2019.06.034}, volume = {149}, issn = {0263-8762}, title = {Development of soft sensors for isomerization process based on support vector machine regression and dynamic polynomial models}, keyword = {Support vector machine (SVM) regression, Soft sensor, Dynamic model, Isomerization process} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font