Pregled bibliografske jedinice broj: 1016182
Data-driven predictions of dynamical systems in healthcare
Data-driven predictions of dynamical systems in healthcare // Equadiff 2019
Liblice, Češka Republika, 2019. (poster, recenziran, neobjavljeni rad, znanstveni)
CROSBI ID: 1016182 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Data-driven predictions of dynamical systems in healthcare
Autori
Črnjarić-Žic, Nelida ; Maćešić, Senka ; Mezić, Igor
Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, neobjavljeni rad, znanstveni
Izvornik
Equadiff 2019
/ - , 2019
Skup
Equadiff 2019
Mjesto i datum
Liblice, Češka Republika, 08.07.2019. - 12.07.2019
Vrsta sudjelovanja
Poster
Vrsta recenzije
Recenziran
Ključne riječi
Koopman mode decomposition, prediction, Dynamic mode decomposition, Hankel matrix
Sažetak
The problem of prediction of behavior of dynamical systems has undergone a change in the second half of the 20th century with the discovery of the possibility of chaotic dynamics in simple dynamical systems. However, that approach does not account for another type of unpredictability: the ``black swan" event. In our framework, the black-swan-type dynamics occurs when an underlying dynamical system becomes coupled to, or decoupled from, another one. Here we explore the problem of prediction in systems that exhibit such behavior. The mathematical theory and algorithms we use are based on an operator-theoretic approach in which the dynamics of the system are embedded into an infinite-dimensional space. We show that the framework correctly identifies a black swan event. Moreover, we show that the algorithms we developed enabled a successful prediction of the flu season, and prediction in other complex dynamics datasets such as physiology models.
Izvorni jezik
Engleski
Znanstvena područja
Matematika, Temeljne tehničke znanosti, Interdisciplinarne tehničke znanosti
POVEZANOST RADA
Ustanove:
Tehnički fakultet, Rijeka,
Sveučilište u Rijeci