Pregled bibliografske jedinice broj: 1016173
Detecting Credit Card Fraud Using Selected Machine Learning Algorithms
Detecting Credit Card Fraud Using Selected Machine Learning Algorithms // 2019 42nd International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO)
Opatija, 2019. str. 1250-1255 doi:10.23919/MIPRO.2019.8757212 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 1016173 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Detecting Credit Card Fraud Using Selected Machine Learning Algorithms
Autori
Puh, Maja ; Brkić, Ljiljana
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
2019 42nd International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO)
/ - Opatija, 2019, 1250-1255
ISBN
978-953-233-098-4
Skup
42nd International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO 2019)
Mjesto i datum
Opatija, Hrvatska, 20.05.2019. - 24.05.2019
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
credit card fraud detection ; machine learning ; class imbalance
Sažetak
Due to the immense growth of e-commerce and increased online based payment possibilities, credit card fraud has become deeply relevant global issue. Recently, there has been major interest for applying machine learning algorithms as data mining technique for credit card fraud detection. However, number of challenges appear, such as lack of publicly available data sets, highly imbalanced class sizes, variant fraudulent behavior etc. In this paper we compare performance of three machine learning algorithms: Random forest, Support Vector Machine and Logistic regression in detecting fraud on real-life data containing credit card transactions. To mitigate imbalanced class sizes, we use SMOTE sampling method. The problem of ever-changing fraud patterns is considered with employing incremental learning of selected ML algorithms in experiments. The performance of the techniques is evaluated based on commonly accepted metric: precision and recall.
Izvorni jezik
Engleski
Znanstvena područja
Računarstvo
POVEZANOST RADA
Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb
Profili:
Ljiljana Brkić
(autor)