Pregled bibliografske jedinice broj: 1015383
Convolutional autoencoder for feature extraction in tactile sensing
Convolutional autoencoder for feature extraction in tactile sensing // IEEE Robotics and Automation Letters, 4 (2019), 4; 3671-3678 doi:10.1109/lra.2019.2927950 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 1015383 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Convolutional autoencoder for feature extraction in tactile sensing
Autori
Polic, Marsela ; Krajacic, Ivona ; Lepora, Nathan ; Orsag, Matko
Izvornik
IEEE Robotics and Automation Letters (2377-3766) 4
(2019), 4;
3671-3678
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
Feature extraction , Pins , Tactile sensors , Training
(Taktilni senzori, Neuronske mreže, Značajke)
Sažetak
A common approach in the field of tactile robotics is the development of a new perception algorithm for each new application of existing hardware solutions. In this letter, we present a method of dimensionality reduction of an optical-based tactile sensor image output using a convolutional neural network encoder structure. Instead of using various complex perception algorithms, and/or manually choosing task-specific data features, this unsupervised feature extraction method allows simultaneous online deployment of multiple simple perception algorithms on a common set of black-box features. The method is validated on a set of benchmarking use cases. Contact object shape, edge position, orientation, and indentation depth are estimated using shallow neural networks and machine learning models. Furthermore, a contact force estimator is trained, affirming that the extracted features contain sufficient information on both spatial and mechanical characteristics of the manipulated object.
Izvorni jezik
Engleski
Znanstvena područja
Elektrotehnika
POVEZANOST RADA
Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb
Citiraj ovu publikaciju:
Časopis indeksira:
- Web of Science Core Collection (WoSCC)
- Emerging Sources Citation Index (ESCI)
- Scopus