Pregled bibliografske jedinice broj: 1015203
A note on the article "Anomalous relaxation model based on the fractional derivative with a Prabhakar-like kernel" [Z. Angew. Math. Phys. (2019) 70: 42]
A note on the article "Anomalous relaxation model based on the fractional derivative with a Prabhakar-like kernel" [Z. Angew. Math. Phys. (2019) 70: 42] // Zeitschrift fur angewandte mathematik und physik, 70 (2019), 5; 141, 6 doi:10.1007/s00033-019-1186-z (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 1015203 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
A note on the article "Anomalous relaxation model based on the fractional derivative with a Prabhakar-like kernel" [Z. Angew. Math. Phys. (2019) 70: 42]
Autori
Gorska, Katarzyna ; Horzela, Andrzej ; Poganj, Tibor
Izvornik
Zeitschrift fur angewandte mathematik und physik (0044-2275) 70
(2019), 5;
141, 6
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
Anomalous relaxation ; Colo-Cole model ; Debye relaxation ; Prabhakar function ; Fractional derivative
Sažetak
Inspired by the article "Anomalous relaxation model based on the fractional derivative with a Prabhakar-like kernel" (Z. Angew. Math. Phys. (2019) 70:42) which authors D. Zhao and HG. Sun studied the integro-differential equation with the kernel given by the Prabhakar function $e^{; ; ; - \gamma}; ; ; _{; ; ; \alpha, \beta}; ; ; (t, \lambda)$ we provide the solution to this equation which is complementary to that obtained up to now. Our solution is valid for effective relaxation times which admissible range extends the limits given in \cite[Theorem 3.1]{; ; ; ; DZhao2019}; ; ; ; to all positive values. For special choices of parameters entering the equation itself and/or characterizing the kernel the solution comprises to known phenomenological relaxation patterns, e.g. to the Cole-Cole model (if $\gamma = 1, \beta=1-\alpha$) or to the standard Debye relaxation.
Izvorni jezik
Engleski
Znanstvena područja
Matematika, Fizika
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus
Uključenost u ostale bibliografske baze podataka::
- Referativni Zhurnal Matematika