Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1014338

Evaluation of automatic neonatal brain segmentation algorithms: The NeoBrainS12 challenge


Išgum, Ivana; Benders, Manon J.N.L.; Avants, Brian; Cardoso, M. Jorge; Counsell, Serena J.; Gomez, Elda Fischi; Gui, Laura; Hűppi, Petra S.; Kersbergen, Karina J.; Makropoulos, Antonios et al.
Evaluation of automatic neonatal brain segmentation algorithms: The NeoBrainS12 challenge // Medical Image Analysis, 20 (2015), 1; 135-151 doi:10.1016/j.media.2014.11.001 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1014338 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Evaluation of automatic neonatal brain segmentation algorithms: The NeoBrainS12 challenge

Autori
Išgum, Ivana ; Benders, Manon J.N.L. ; Avants, Brian ; Cardoso, M. Jorge ; Counsell, Serena J. ; Gomez, Elda Fischi ; Gui, Laura ; Hűppi, Petra S. ; Kersbergen, Karina J. ; Makropoulos, Antonios ; Melbourne, Andrew ; Moeskops, Pim ; Mol, Christian P. ; Kuklisova-Murgasova, Maria ; Rueckert, Daniel ; Schnabel, Julia A. ; Srhoj-Egekher, Vedran ; Wu, Jue ; Wang, Siying ; de Vries, Linda S. ; Viergever, Max A.

Izvornik
Medical Image Analysis (1361-8415) 20 (2015), 1; 135-151

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
Neonatal brain ; MRI ; Brain segmentation ; Segmentation evaluation ; Segmentation comparison

Sažetak
A number of algorithms for brain segmentation in preterm born infants have been published, but a reliable comparison of their performance is lacking. The NeoBrainS12 study (http://neobrains12.isi.uu.nl), providing three different image sets of preterm born infants, was set up to provide such a comparison. These sets are (i) axial scans acquired at 40 weeks corrected age, (ii) coronal scans acquired at 30 weeks corrected age and (iii) coronal scans acquired at 40 weeks corrected age. Each of these three sets consists of three T1- and T2- weighted MR images of the brain acquired with a 3T MRI scanner. The task was to segment cortical grey matter, non-myelinated and myelinated white matter, brainstem, basal ganglia and thalami, cerebellum, and cerebrospinal fluid in the ventricles and in the extracerebral space separately. Any team could upload the results and all segmentations were evaluated in the same way. This paper presents the results of eight participating teams. The results demonstrate that the participating methods were able to segment all tissue classes well, except myelinated white matter.

Izvorni jezik
Engleski

Znanstvena područja
Elektrotehnika, Računarstvo, Interdisciplinarne tehničke znanosti



POVEZANOST RADA


Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb

Poveznice na cjeloviti tekst rada:

doi

Citiraj ovu publikaciju:

Išgum, Ivana; Benders, Manon J.N.L.; Avants, Brian; Cardoso, M. Jorge; Counsell, Serena J.; Gomez, Elda Fischi; Gui, Laura; Hűppi, Petra S.; Kersbergen, Karina J.; Makropoulos, Antonios et al.
Evaluation of automatic neonatal brain segmentation algorithms: The NeoBrainS12 challenge // Medical Image Analysis, 20 (2015), 1; 135-151 doi:10.1016/j.media.2014.11.001 (međunarodna recenzija, članak, znanstveni)
Išgum, I., Benders, M., Avants, B., Cardoso, M., Counsell, S., Gomez, E., Gui, L., Hűppi, P., Kersbergen, K. & Makropoulos, A. (2015) Evaluation of automatic neonatal brain segmentation algorithms: The NeoBrainS12 challenge. Medical Image Analysis, 20 (1), 135-151 doi:10.1016/j.media.2014.11.001.
@article{article, author = {I\v{s}gum, Ivana and Benders, Manon J.N.L. and Avants, Brian and Cardoso, M. Jorge and Counsell, Serena J. and Gomez, Elda Fischi and Gui, Laura and H\H{u}ppi, Petra S. and Kersbergen, Karina J. and Makropoulos, Antonios and Melbourne, Andrew and Moeskops, Pim and Mol, Christian P. and Kuklisova-Murgasova, Maria and Rueckert, Daniel and Schnabel, Julia A. and Srhoj-Egekher, Vedran and Wu, Jue and Wang, Siying and de Vries, Linda S. and Viergever, Max A.}, year = {2015}, pages = {135-151}, DOI = {10.1016/j.media.2014.11.001}, keywords = {Neonatal brain, MRI, Brain segmentation, Segmentation evaluation, Segmentation comparison}, journal = {Medical Image Analysis}, doi = {10.1016/j.media.2014.11.001}, volume = {20}, number = {1}, issn = {1361-8415}, title = {Evaluation of automatic neonatal brain segmentation algorithms: The NeoBrainS12 challenge}, keyword = {Neonatal brain, MRI, Brain segmentation, Segmentation evaluation, Segmentation comparison} }
@article{article, author = {I\v{s}gum, Ivana and Benders, Manon J.N.L. and Avants, Brian and Cardoso, M. Jorge and Counsell, Serena J. and Gomez, Elda Fischi and Gui, Laura and H\H{u}ppi, Petra S. and Kersbergen, Karina J. and Makropoulos, Antonios and Melbourne, Andrew and Moeskops, Pim and Mol, Christian P. and Kuklisova-Murgasova, Maria and Rueckert, Daniel and Schnabel, Julia A. and Srhoj-Egekher, Vedran and Wu, Jue and Wang, Siying and de Vries, Linda S. and Viergever, Max A.}, year = {2015}, pages = {135-151}, DOI = {10.1016/j.media.2014.11.001}, keywords = {Neonatal brain, MRI, Brain segmentation, Segmentation evaluation, Segmentation comparison}, journal = {Medical Image Analysis}, doi = {10.1016/j.media.2014.11.001}, volume = {20}, number = {1}, issn = {1361-8415}, title = {Evaluation of automatic neonatal brain segmentation algorithms: The NeoBrainS12 challenge}, keyword = {Neonatal brain, MRI, Brain segmentation, Segmentation evaluation, Segmentation comparison} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus
  • MEDLINE


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font