Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1012997

A Deep Learning Perspective on Beauty, Sentiment, and Remembrance of Art


Cetinić, Eva; Lipić, Tomislav; Grgić, Sonja
A Deep Learning Perspective on Beauty, Sentiment, and Remembrance of Art // IEEE access, 7 (2019), 73694-73710 doi:10.1109/ACCESS.2019.2921101 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1012997 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
A Deep Learning Perspective on Beauty, Sentiment, and Remembrance of Art

Autori
Cetinić, Eva ; Lipić, Tomislav ; Grgić, Sonja

Izvornik
IEEE access (2169-3536) 7 (2019); 73694-73710

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
convolutional neural networks ; image aesthetics ; image memorability ; fine art ; visual sentiment

Sažetak
With the emergence of large digitized fine art collections and the successful performance of deep learning techniques, new research prospects unfold in the intersection of artificial intelligence and art. In order to explore the applicability of deep learning techniques in understanding art images beyond object recognition and classification, we employ convolutional neural networks (CNN) to predict scores related to three subjective aspects of human perception: aesthetic evaluation of the image, sentiment evoked by the image, and memorability of the image. For each concept, we evaluate several different CNN models trained on various natural image datasets and select the best performing model based on the qualitative results and the comparison with existing subjective ratings of artworks. Furthermore, we employ different decision treebased machine learning models to analyze the relative importance of various image features related to the content, composition, and color in determining image aesthetics, visual sentiment, and memorability scores. Our findings suggest that content and image lighting have significant influence on aesthetics, in which color vividness and harmony strongly influence sentiment prediction, while object emphasis has a high impact on memorability. In addition, we explore the predicted aesthetic, sentiment, and memorability scores in the context of art history by analyzing their distribution in regard to different artistic styles, genres, artists, and centuries. The presented approach enables new ways of exploring fine art collections based on highly subjective aspects of art, as well as represents one step forward toward bridging the gap between traditional formal analysis and the computational analysis of fine art.

Izvorni jezik
Engleski

Znanstvena područja
Računarstvo



POVEZANOST RADA


Projekti:
KK.01.1.1.01.0009 - Napredne metode i tehnologije u znanosti o podatcima i kooperativnim sustavima (EK )

Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb,
Institut "Ruđer Bošković", Zagreb

Profili:

Avatar Url Sonja Grgić (autor)

Avatar Url Eva Cetinić (autor)

Avatar Url Tomislav Lipić (autor)

Poveznice na cjeloviti tekst rada:

doi ieeexplore.ieee.org doi.org fulir.irb.hr

Citiraj ovu publikaciju:

Cetinić, Eva; Lipić, Tomislav; Grgić, Sonja
A Deep Learning Perspective on Beauty, Sentiment, and Remembrance of Art // IEEE access, 7 (2019), 73694-73710 doi:10.1109/ACCESS.2019.2921101 (međunarodna recenzija, članak, znanstveni)
Cetinić, E., Lipić, T. & Grgić, S. (2019) A Deep Learning Perspective on Beauty, Sentiment, and Remembrance of Art. IEEE access, 7, 73694-73710 doi:10.1109/ACCESS.2019.2921101.
@article{article, author = {Cetini\'{c}, Eva and Lipi\'{c}, Tomislav and Grgi\'{c}, Sonja}, year = {2019}, pages = {73694-73710}, DOI = {10.1109/ACCESS.2019.2921101}, keywords = {convolutional neural networks, image aesthetics, image memorability, fine art, visual sentiment}, journal = {IEEE access}, doi = {10.1109/ACCESS.2019.2921101}, volume = {7}, issn = {2169-3536}, title = {A Deep Learning Perspective on Beauty, Sentiment, and Remembrance of Art}, keyword = {convolutional neural networks, image aesthetics, image memorability, fine art, visual sentiment} }
@article{article, author = {Cetini\'{c}, Eva and Lipi\'{c}, Tomislav and Grgi\'{c}, Sonja}, year = {2019}, pages = {73694-73710}, DOI = {10.1109/ACCESS.2019.2921101}, keywords = {convolutional neural networks, image aesthetics, image memorability, fine art, visual sentiment}, journal = {IEEE access}, doi = {10.1109/ACCESS.2019.2921101}, volume = {7}, issn = {2169-3536}, title = {A Deep Learning Perspective on Beauty, Sentiment, and Remembrance of Art}, keyword = {convolutional neural networks, image aesthetics, image memorability, fine art, visual sentiment} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font