Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1012493

Drone Localization using Ultrasonic TDOA and RSS Signal – Integration of the Inverse Method of a Particle Filter


Šoštarić, Damir; Mester, Gyula
Drone Localization using Ultrasonic TDOA and RSS Signal – Integration of the Inverse Method of a Particle Filter // FME Transactions, 48 (2019), 21-30 doi:10.5937/fmet2001021S (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1012493 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Drone Localization using Ultrasonic TDOA and RSS Signal – Integration of the Inverse Method of a Particle Filter

Autori
Šoštarić, Damir ; Mester, Gyula

Izvornik
FME Transactions (1451-2092) 48 (2019); 21-30

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
WSN, TDOA-RSS method, Indoor localization, Probabilistic model, Particle filter.

Sažetak
This paper will present an overview of indoor and outdoor drone localization methods. Outdoor scenarios almost always use a GPS with IMU. Indoor systems using short-range sensors that are sensitive to the external conditions of the environment. Mostly used methods are optical flow and stereovision, while an ultrasonic transceiver system optimizes and provides high precision and orientation of the drone. An ultrasonic preceptor is integrated into a listener/beacon and can be used with referenced beacons inside a WSN. The Crossbow Cricket hardware platform, which is based on TDOA and RSS principle is used for simulations and code development. The researched direction is the localization of referent nodes (beacons) concerning the listener which is mounted on a flying drone. For that purpose, a probabilistic approach is used, based on a Bayes filter, where the positions of the beacon can be observed like random variables. Considering that these distributions significantly vary from a Gauss distribution, it is appropriate to use a particle filter.

Izvorni jezik
Engleski

Znanstvena područja
Elektrotehnika, Strojarstvo, Interdisciplinarne tehničke znanosti



POVEZANOST RADA


Profili:

Avatar Url Damir Šoštarić (autor)

Poveznice na cjeloviti tekst rada:

Pristup cjelovitom tekstu rada doi www.mas.bg.ac.rs

Citiraj ovu publikaciju:

Šoštarić, Damir; Mester, Gyula
Drone Localization using Ultrasonic TDOA and RSS Signal – Integration of the Inverse Method of a Particle Filter // FME Transactions, 48 (2019), 21-30 doi:10.5937/fmet2001021S (međunarodna recenzija, članak, znanstveni)
Šoštarić, D. & Mester, G. (2019) Drone Localization using Ultrasonic TDOA and RSS Signal – Integration of the Inverse Method of a Particle Filter. FME Transactions, 48, 21-30 doi:10.5937/fmet2001021S.
@article{article, author = {\v{S}o\v{s}tari\'{c}, Damir and Mester, Gyula}, year = {2019}, pages = {21-30}, DOI = {10.5937/fmet2001021S}, keywords = {WSN, TDOA-RSS method, Indoor localization, Probabilistic model, Particle filter.}, journal = {FME Transactions}, doi = {10.5937/fmet2001021S}, volume = {48}, issn = {1451-2092}, title = {Drone Localization using Ultrasonic TDOA and RSS Signal – Integration of the Inverse Method of a Particle Filter}, keyword = {WSN, TDOA-RSS method, Indoor localization, Probabilistic model, Particle filter.} }
@article{article, author = {\v{S}o\v{s}tari\'{c}, Damir and Mester, Gyula}, year = {2019}, pages = {21-30}, DOI = {10.5937/fmet2001021S}, keywords = {WSN, TDOA-RSS method, Indoor localization, Probabilistic model, Particle filter.}, journal = {FME Transactions}, doi = {10.5937/fmet2001021S}, volume = {48}, issn = {1451-2092}, title = {Drone Localization using Ultrasonic TDOA and RSS Signal – Integration of the Inverse Method of a Particle Filter}, keyword = {WSN, TDOA-RSS method, Indoor localization, Probabilistic model, Particle filter.} }

Časopis indeksira:


  • Web of Science Core Collection (WoSCC)
    • Emerging Sources Citation Index (ESCI)
  • Scopus
  • EconLit


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font