Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1012276

Gaussian process regression modeling of wind turbines lightning incidence with LLS information


Sarajčev, Petar; Jakus, Damir; Mudnić, Eugen
Gaussian process regression modeling of wind turbines lightning incidence with LLS information // Renewable energy, 146 (2020), 1221-1231 doi:10.1016/j.renene.2019.07.050 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1012276 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Gaussian process regression modeling of wind turbines lightning incidence with LLS information

Autori
Sarajčev, Petar ; Jakus, Damir ; Mudnić, Eugen

Izvornik
Renewable energy (0960-1481) 146 (2020); 1221-1231

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
bayesian statistics ; gaussian process regression ; lightning ; LLS ; machine learning ; wind turbine

Sažetak
This paper presents a machine learning (ML) approach to wind turbine (WT) lightning incidence analysis in complex terrain, based on the information obtained from a lightning location system (LLS). A particular ML model of the WTs lightning incidence is developed, using Bayesian statistical learning and Gaussian process regression, and trained on the actual LLS data. The model is developed around a known proposition that the lightning strike frequency data are emanating from a Poisson stochastic process. It further makes use of an attractive radius concept of lightning attachment, employs a sophisticated analysis of the WT effective height—which leverages terrain elevation data—and introduces spatial autocorrelation of lightning strikes. It provides a probabilistic risk assessment of WT lightning damage, along with a statistical measures of the associated monetized financial losses. Proposed ML model benefits from the Bayesian ability to quantify uncertainty of model parameters, and employ hierarchical model structure that informs model parameters through the mutual higher-level hyperpriors. Proposed model enables both investors and insurance companies to asses risks associated with lightning incidence to WTs, considering historical LLS data and future wind farm installation locations.

Izvorni jezik
Engleski

Znanstvena područja
Elektrotehnika



POVEZANOST RADA


Ustanove:
Fakultet elektrotehnike, strojarstva i brodogradnje, Split

Profili:

Avatar Url Petar Sarajčev (autor)

Avatar Url Eugen Mudnić (autor)

Avatar Url Damir Jakus (autor)

Poveznice na cjeloviti tekst rada:

doi www.sciencedirect.com

Citiraj ovu publikaciju:

Sarajčev, Petar; Jakus, Damir; Mudnić, Eugen
Gaussian process regression modeling of wind turbines lightning incidence with LLS information // Renewable energy, 146 (2020), 1221-1231 doi:10.1016/j.renene.2019.07.050 (međunarodna recenzija, članak, znanstveni)
Sarajčev, P., Jakus, D. & Mudnić, E. (2020) Gaussian process regression modeling of wind turbines lightning incidence with LLS information. Renewable energy, 146, 1221-1231 doi:10.1016/j.renene.2019.07.050.
@article{article, author = {Saraj\v{c}ev, Petar and Jakus, Damir and Mudni\'{c}, Eugen}, year = {2020}, pages = {1221-1231}, DOI = {10.1016/j.renene.2019.07.050}, keywords = {bayesian statistics, gaussian process regression, lightning, LLS, machine learning, wind turbine}, journal = {Renewable energy}, doi = {10.1016/j.renene.2019.07.050}, volume = {146}, issn = {0960-1481}, title = {Gaussian process regression modeling of wind turbines lightning incidence with LLS information}, keyword = {bayesian statistics, gaussian process regression, lightning, LLS, machine learning, wind turbine} }
@article{article, author = {Saraj\v{c}ev, Petar and Jakus, Damir and Mudni\'{c}, Eugen}, year = {2020}, pages = {1221-1231}, DOI = {10.1016/j.renene.2019.07.050}, keywords = {bayesian statistics, gaussian process regression, lightning, LLS, machine learning, wind turbine}, journal = {Renewable energy}, doi = {10.1016/j.renene.2019.07.050}, volume = {146}, issn = {0960-1481}, title = {Gaussian process regression modeling of wind turbines lightning incidence with LLS information}, keyword = {bayesian statistics, gaussian process regression, lightning, LLS, machine learning, wind turbine} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font