Pregled bibliografske jedinice broj: 1012168
Towards bifurcations of complex dimensions
Towards bifurcations of complex dimensions // Equadiff 2019: Book of Abstracts
Liblice, Češka Republika, 2019. str. 89-89 (predavanje, međunarodna recenzija, sažetak, znanstveni)
CROSBI ID: 1012168 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Towards bifurcations of complex dimensions
Autori
Lapidus, Michel L. ; Radunović, Goran ; Žubrinić, Darko
Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, znanstveni
Izvornik
Equadiff 2019: Book of Abstracts
/ - , 2019, 89-89
Skup
Equadiff 2019
Mjesto i datum
Liblice, Češka Republika, 08.07.2019. - 12.07.2019
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
bifurcations ; complex dimensions, fractal zeta function, fracctal set, Minkowski content
Sažetak
It is known that at the moment when a limit cycle is born from a weak focus in a Hopf-Takens bifurcation, the Minkowski dimension of any associated spiral trajectory jumps from trivial, i.e., 1 to nontrivial, i.e. a rational number of the form 4k/(2k+1) where the integer k is the multiplicity of the weak focus. For a given set, its complex dimensions are defined as the poles of the associated fractal distance zeta function and provide a far-reaching generalization of the classical notion of the Minkowski dimension. The higher-dimensional theory of complex dimensions has been developed in the recent extensive research monograph by the co-authors. One defines the order of a given complex dimension as the order of the pole of the associated fractal zeta function. We show on a geometric example of a fractal nest the effect of merging of two simple complex dimensions of order one into a single complex dimension of order 2. This is interesting since the fractal nest can be considered as a geometric simplification of a focus trajectory of a dynamical system. We conjecture that this effect of merging of several complex dimensions into a single one can give new insights into bifurcations of dynamical systems.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Projekti:
HRZZ-UIP-2017-05-1020 - Fraktalna analiza diskretnih dinamičkih sustava (DSfracta) (Resman, Maja, HRZZ - 2017-05) ( CroRIS)
Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb,
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb,
Prirodoslovno-matematički fakultet, Zagreb