Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1012034

Stochastic Optimization for Trajectory Planning with Heteroscedastic Gaussian Processes


Petrović, Luka; Peršić, Juraj; Seder, Marija; Marković, Ivan
Stochastic Optimization for Trajectory Planning with Heteroscedastic Gaussian Processes // European Conference on Mobile Robots (ECMR)
Prag, Češka Republika, 2019. str. 1-6 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)


CROSBI ID: 1012034 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Stochastic Optimization for Trajectory Planning with Heteroscedastic Gaussian Processes

Autori
Petrović, Luka ; Peršić, Juraj ; Seder, Marija ; Marković, Ivan

Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni

Izvornik
European Conference on Mobile Robots (ECMR) / - , 2019, 1-6

Skup
ECMR 2019 – European Conference on Mobile Robots 2019

Mjesto i datum
Prag, Češka Republika, 04.09.2019. - 06.09.2019

Vrsta sudjelovanja
Predavanje

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
Motion Planning ; Trajectory Optimization ; Gaussian Processes ; Stochastic Optimization

Sažetak
Trajectory optimization methods for motion planning attempt to generate trajectories that minimize a suitable objective function. Such methods efficiently find solutions even for high degree-of-freedom robots. However, a globally optimal solution is often intractable in practice and state-of-the-art trajectory optimization methods are thus prone to local minima, especially in cluttered environments. In this paper, we propose a novel motion planning algorithm that employs stochastic optimization based on the cross-entropy method in order to tackle the local minima problem. We represent trajectories as samples from a continuous-time Gaussian process and introduce heteroscedasticity to generate powerful trajectory priors better suited for collision avoidance in motion planning problems. Our experimental evaluation shows that the proposed approach yields a more thorough exploration of the solution space and a higher success rate in complex environments than a current Gaussian process motion planning state-of-the-art trajectory optimization method, namely GPMP2, while having comparable execution time.

Izvorni jezik
Engleski

Znanstvena područja
Elektrotehnika, Računarstvo, Temeljne tehničke znanosti



POVEZANOST RADA


Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb

Profili:

Avatar Url Ivan Marković (autor)

Avatar Url Luka Petrović (autor)

Avatar Url Juraj Peršić (autor)

Avatar Url Marija Seder (autor)


Citiraj ovu publikaciju:

Petrović, Luka; Peršić, Juraj; Seder, Marija; Marković, Ivan
Stochastic Optimization for Trajectory Planning with Heteroscedastic Gaussian Processes // European Conference on Mobile Robots (ECMR)
Prag, Češka Republika, 2019. str. 1-6 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
Petrović, L., Peršić, J., Seder, M. & Marković, I. (2019) Stochastic Optimization for Trajectory Planning with Heteroscedastic Gaussian Processes. U: European Conference on Mobile Robots (ECMR).
@article{article, author = {Petrovi\'{c}, Luka and Per\v{s}i\'{c}, Juraj and Seder, Marija and Markovi\'{c}, Ivan}, year = {2019}, pages = {1-6}, keywords = {Motion Planning, Trajectory Optimization, Gaussian Processes, Stochastic Optimization}, title = {Stochastic Optimization for Trajectory Planning with Heteroscedastic Gaussian Processes}, keyword = {Motion Planning, Trajectory Optimization, Gaussian Processes, Stochastic Optimization}, publisherplace = {Prag, \v{C}e\v{s}ka Republika} }
@article{article, author = {Petrovi\'{c}, Luka and Per\v{s}i\'{c}, Juraj and Seder, Marija and Markovi\'{c}, Ivan}, year = {2019}, pages = {1-6}, keywords = {Motion Planning, Trajectory Optimization, Gaussian Processes, Stochastic Optimization}, title = {Stochastic Optimization for Trajectory Planning with Heteroscedastic Gaussian Processes}, keyword = {Motion Planning, Trajectory Optimization, Gaussian Processes, Stochastic Optimization}, publisherplace = {Prag, \v{C}e\v{s}ka Republika} }




Contrast
Increase Font
Decrease Font
Dyslexic Font