Pregled bibliografske jedinice broj: 1012034
Stochastic Optimization for Trajectory Planning with Heteroscedastic Gaussian Processes
Stochastic Optimization for Trajectory Planning with Heteroscedastic Gaussian Processes // European Conference on Mobile Robots (ECMR)
Prag, Češka Republika, 2019. str. 1-6 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 1012034 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Stochastic Optimization for Trajectory Planning with Heteroscedastic Gaussian Processes
Autori
Petrović, Luka ; Peršić, Juraj ; Seder, Marija ; Marković, Ivan
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
European Conference on Mobile Robots (ECMR)
/ - , 2019, 1-6
Skup
ECMR 2019 – European Conference on Mobile Robots 2019
Mjesto i datum
Prag, Češka Republika, 04.09.2019. - 06.09.2019
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
Motion Planning ; Trajectory Optimization ; Gaussian Processes ; Stochastic Optimization
Sažetak
Trajectory optimization methods for motion planning attempt to generate trajectories that minimize a suitable objective function. Such methods efficiently find solutions even for high degree-of-freedom robots. However, a globally optimal solution is often intractable in practice and state-of-the-art trajectory optimization methods are thus prone to local minima, especially in cluttered environments. In this paper, we propose a novel motion planning algorithm that employs stochastic optimization based on the cross-entropy method in order to tackle the local minima problem. We represent trajectories as samples from a continuous-time Gaussian process and introduce heteroscedasticity to generate powerful trajectory priors better suited for collision avoidance in motion planning problems. Our experimental evaluation shows that the proposed approach yields a more thorough exploration of the solution space and a higher success rate in complex environments than a current Gaussian process motion planning state-of-the-art trajectory optimization method, namely GPMP2, while having comparable execution time.
Izvorni jezik
Engleski
Znanstvena područja
Elektrotehnika, Računarstvo, Temeljne tehničke znanosti
POVEZANOST RADA
Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb