Pregled bibliografske jedinice broj: 1010771
Chart Classification Using Simplified VGG Model
Chart Classification Using Simplified VGG Model // 2019 International Conference on Systems, Signals and Image Processing (IWSSIP) / Snježana Rimac-Drlje ; Drago Žagar ; Irena Galić ; Goran Martinović ; Denis Vranješ ; Marija Habijan (ur.).
Osijek: Institute of Electrical and Electronics Engineers (IEEE), 2019. str. 229-233 doi:10.1109/IWSSIP.2019.8787299 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 1010771 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Chart Classification Using Simplified VGG Model
(Classification Using Simplified VGG Model)
Autori
Bajić, Filip ; Job, Josip ; Nenadić, Krešimir
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
2019 International Conference on Systems, Signals and Image Processing (IWSSIP)
/ Snježana Rimac-Drlje ; Drago Žagar ; Irena Galić ; Goran Martinović ; Denis Vranješ ; Marija Habijan - Osijek : Institute of Electrical and Electronics Engineers (IEEE), 2019, 229-233
ISBN
978-1-7281-3227-3
Skup
26th International Conference on Systems, Signals and Image Processing (IWSSIP 2019)
Mjesto i datum
Osijek, Hrvatska, 05.06.2019. - 07.06.2019
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
Visualization, Chart Image Classification, Convolutional Neural Networks, Chart Recognition
Sažetak
From the need to show vast amount of data in a more transparent way, data visualization is created. Data visualization often contains key information that is not listed anywhere in the text and allows the reader to find out important information and longer-term memory. On the other hand, Internet search engines have a problem with filtering data visualization and associating visualization and the query that the user has entered. With the use of data visualization, all blind people and people with impaired vision are left off. This paper uses machine learning for classifying charts in 10 categories. Total accuracy achieved across all categories is 81.67%.
Izvorni jezik
Engleski
Znanstvena područja
Računarstvo
POVEZANOST RADA
Ustanove:
Fakultet elektrotehnike, računarstva i informacijskih tehnologija Osijek