Pregled bibliografske jedinice broj: 1010741
Wide & Deep Machine Learning Model for Transformer Health Analysis
Wide & Deep Machine Learning Model for Transformer Health Analysis // 4th International Conference on Smart and Sustainable Technologies (SpliTech 2019) / Rodrigues, Joel J.P.C. ; Nizetic, Sandro (ur.).
Split: Fakultet elektrotehnike, strojarstva i brodogradnje Sveučilišta u Splitu, 2019. S16-1570518679-1806, 6 doi:10.23919/SpliTech.2019.8783122 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 1010741 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Wide & Deep Machine Learning Model for Transformer Health Analysis
Autori
Sarajcev, Petar ; Jakus, Damir ; Nikolic, Matej
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
4th International Conference on Smart and Sustainable Technologies (SpliTech 2019)
/ Rodrigues, Joel J.P.C. ; Nizetic, Sandro - Split : Fakultet elektrotehnike, strojarstva i brodogradnje Sveučilišta u Splitu, 2019
Skup
4th International Conference on Smart and Sustainable Technologies (SpliTech)
Mjesto i datum
Bol, Hrvatska; Split, Hrvatska, 18.06.2019. - 21.06.2019
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
Artificial neural network ; Bayesian learning ; Health Index ; Joint learning ; Probit regression ; Transformer
Sažetak
Transformer health index (HI) is a powerful tool for quantifying the overall health of a power transformer, due to the fact that it appraises its condition based on different criteria that are related (often in complex ways) to the long-term degradation factors that cumulatively lead to its end-of-life. Several authors have proposed different approaches to the HI calculation, e.g., analytical expressions, binary logistic regression, fuzzy logic models, support vector machines, and artificial neural networks. This paper proposes using Bayesian "Wide & Deep" machine learning model for the HI calculation, where the wide model part is the Bayesian ordered robust "probit" regression, while the deep part is the Bayesian artificial neural network. Both model parts are trained simultaneously within the Bayesian setting, using the so-called "joint learning" process with a Markov-chain Monte Carlo algorithm. Model is demonstrated using the actual transformer data.
Izvorni jezik
Engleski
Znanstvena područja
Elektrotehnika
Napomena
IEEE Catalog Number: CFP19F09‐USB ; ISBN 978‐953‐290‐089‐71
POVEZANOST RADA
Ustanove:
Fakultet elektrotehnike, strojarstva i brodogradnje, Split
Citiraj ovu publikaciju:
Časopis indeksira:
- Web of Science Core Collection (WoSCC)
- Conference Proceedings Citation Index - Science (CPCI-S)
- Scopus