Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1010090

Non-homogeneous boundary problems for one dimensional flow of the compressible viscous and heat-conducting micropolar fluid


Dražić, Ivan
Non-homogeneous boundary problems for one dimensional flow of the compressible viscous and heat-conducting micropolar fluid // Differential and Difference Equations with Applications / Pinelas Sandra ; Graef John R. ; Hilger Stefan ; Kloeden Peter ; Schinas Christos (ur.).
Cham: Springer, 2020. str. 389-395 doi:10.1007/978-3-030-56323-3_30 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)


CROSBI ID: 1010090 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Non-homogeneous boundary problems for one dimensional flow of the compressible viscous and heat-conducting micropolar fluid

Autori
Dražić, Ivan

Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni

Izvornik
Differential and Difference Equations with Applications / Pinelas Sandra ; Graef John R. ; Hilger Stefan ; Kloeden Peter ; Schinas Christos - Cham : Springer, 2020, 389-395

ISBN
978-3-030-56322-6

Skup
International Conference on Differential & Difference Equations and Applications (ICDDEA 2019)

Mjesto i datum
Lisabon, Portugal, 01.07.2019. - 05.07.2019

Vrsta sudjelovanja
Predavanje

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
micropolar fluid, generalized solution, non-homogenous boudary problem

Sažetak
We consider nonstationary 1-D flow of a compressible viscous and heat-conducting micropolar fluid which is in the thermodynamical sense perfect and polytropic. In the first part of the work we present corresponding initial-boundary value problems whereby we allow non-homogeneous boundary conditions for velocity, microrotation or temperature. In the second part of the work we present existence results for described problems under the additional assumption that the initial density and initial temperature are strictly positive.

Izvorni jezik
Engleski

Znanstvena područja
Matematika



POVEZANOST RADA


Ustanove:
Tehnički fakultet, Rijeka

Profili:

Avatar Url Ivan Dražić (autor)

Poveznice na cjeloviti tekst rada:

doi link.springer.com

Citiraj ovu publikaciju:

Dražić, Ivan
Non-homogeneous boundary problems for one dimensional flow of the compressible viscous and heat-conducting micropolar fluid // Differential and Difference Equations with Applications / Pinelas Sandra ; Graef John R. ; Hilger Stefan ; Kloeden Peter ; Schinas Christos (ur.).
Cham: Springer, 2020. str. 389-395 doi:10.1007/978-3-030-56323-3_30 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
Dražić, I. (2020) Non-homogeneous boundary problems for one dimensional flow of the compressible viscous and heat-conducting micropolar fluid. U: Pinelas Sandra, Graef John R., Hilger Stefan, Kloeden Peter & Schinas Christos (ur.)Differential and Difference Equations with Applications doi:10.1007/978-3-030-56323-3_30.
@article{article, author = {Dra\v{z}i\'{c}, Ivan}, year = {2020}, pages = {389-395}, DOI = {10.1007/978-3-030-56323-3\_30}, keywords = {micropolar fluid, generalized solution, non-homogenous boudary problem}, doi = {10.1007/978-3-030-56323-3\_30}, isbn = {978-3-030-56322-6}, title = {Non-homogeneous boundary problems for one dimensional flow of the compressible viscous and heat-conducting micropolar fluid}, keyword = {micropolar fluid, generalized solution, non-homogenous boudary problem}, publisher = {Springer}, publisherplace = {Lisabon, Portugal} }
@article{article, author = {Dra\v{z}i\'{c}, Ivan}, year = {2020}, pages = {389-395}, DOI = {10.1007/978-3-030-56323-3\_30}, keywords = {micropolar fluid, generalized solution, non-homogenous boudary problem}, doi = {10.1007/978-3-030-56323-3\_30}, isbn = {978-3-030-56322-6}, title = {Non-homogeneous boundary problems for one dimensional flow of the compressible viscous and heat-conducting micropolar fluid}, keyword = {micropolar fluid, generalized solution, non-homogenous boudary problem}, publisher = {Springer}, publisherplace = {Lisabon, Portugal} }

Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font