Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1010012

Jordan neural network for inflation forecasting


Šestanović, Tea
Jordan neural network for inflation forecasting // Croatian Operational Research Review, 10 (2019), 1; 23-33 doi:10.17535/crorr.2019.0003 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1010012 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Jordan neural network for inflation forecasting

Autori
Šestanović, Tea

Izvornik
Croatian Operational Research Review (1848-0225) 10 (2019), 1; 23-33

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
euro zone ; forecasting ; inflation ; Jordan neural network

Sažetak
In times of pronounced nonlinearity of macroeconomic variables and in situations when variables are not normally distributed, i.e. when the assumption of i.i.d. is not fulfilled, neural networks (NNs) should be used for forecasting. In this paper, Jordan neural network (JNN), a special type of NNs is examined, because of its advantages in time series forecasting suitable for inflation forecasting. The variables used as inputs include labour market variable, financial variable, external factor and lagged inflation, i.e. the most commonly used variables in previous researches. The research is conducted at the aggregate level of euro area countries in the period from January 1999 to January 2017. Based on 250 estimated JNNs, which differ in selected variables, sample breaking point and varying parameters (number of hidden neurons, weight value of the context unit), the model adequacy indicators for each JNN are calculated for two periods: in-the-sample and out-of-sample. Finally, the optimal JNN for inflation forecasting is obtained as the best compromise solution between low mean squared error in-the-sample and out-of-sample and low number of parameters to estimate. This paper contributes to existing literature in using JNN for inflation forecasting since it is rarely used for macroeconomic time series prediction in general. Moreover, this paper defines which set of variables contributes to the best inflation forecast. Additionally, JNN is examined thoroughly by fixing certain parameters of the model and alternating other parameters to contribute to the JNN literature, i.e. finding the optimal JNN.

Izvorni jezik
Engleski

Znanstvena područja
Ekonomija



POVEZANOST RADA


Ustanove:
Ekonomski fakultet, Split

Profili:

Avatar Url Tea Šestanović (autor)

Poveznice na cjeloviti tekst rada:

doi hrcak.srce.hr

Citiraj ovu publikaciju:

Šestanović, Tea
Jordan neural network for inflation forecasting // Croatian Operational Research Review, 10 (2019), 1; 23-33 doi:10.17535/crorr.2019.0003 (međunarodna recenzija, članak, znanstveni)
Šestanović, T. (2019) Jordan neural network for inflation forecasting. Croatian Operational Research Review, 10 (1), 23-33 doi:10.17535/crorr.2019.0003.
@article{article, author = {\v{S}estanovi\'{c}, Tea}, year = {2019}, pages = {23-33}, DOI = {10.17535/crorr.2019.0003}, keywords = {euro zone, forecasting, inflation, Jordan neural network}, journal = {Croatian Operational Research Review}, doi = {10.17535/crorr.2019.0003}, volume = {10}, number = {1}, issn = {1848-0225}, title = {Jordan neural network for inflation forecasting}, keyword = {euro zone, forecasting, inflation, Jordan neural network} }
@article{article, author = {\v{S}estanovi\'{c}, Tea}, year = {2019}, pages = {23-33}, DOI = {10.17535/crorr.2019.0003}, keywords = {euro zone, forecasting, inflation, Jordan neural network}, journal = {Croatian Operational Research Review}, doi = {10.17535/crorr.2019.0003}, volume = {10}, number = {1}, issn = {1848-0225}, title = {Jordan neural network for inflation forecasting}, keyword = {euro zone, forecasting, inflation, Jordan neural network} }

Časopis indeksira:


  • Web of Science Core Collection (WoSCC)
    • Emerging Sources Citation Index (ESCI)
  • Scopus
  • EconLit


Uključenost u ostale bibliografske baze podataka::


  • Current Index to Statistics, Current Mathematical Publications
  • EBSCO host
  • Genamics Journal Seek database
  • Hrčak
  • ProQuest
  • MATH on STN International (CompactMath)
  • Directory of Open Access Journals (DOAJ)


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font