Pregled bibliografske jedinice broj: 1007817
Source-code Similarity Detection and Detection Tools Used in Academia: A Systematic Review
Source-code Similarity Detection and Detection Tools Used in Academia: A Systematic Review // ACM Transactions on Computing Education, 19 (2019), 3; 27, 37 doi:10.1145/3313290 (međunarodna recenzija, pregledni rad, znanstveni)
CROSBI ID: 1007817 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Source-code Similarity Detection and Detection Tools Used in Academia: A Systematic Review
Autori
Novak, Matija ; Joy, Mike ; Kermek, Dragutin
Izvornik
ACM Transactions on Computing Education (1946-6226) 19
(2019), 3;
27, 37
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, pregledni rad, znanstveni
Ključne riječi
Source-code, academia, detection, education, plagiarism, programming, similarity, systematic review
Sažetak
Teachers deal with plagiarism on a regular basis, so they try to prevent and detect plagiarism, a task that is complicated by the large size of some classes. Students who cheat often try to hide their plagiarism (obfuscate), and many different similarity detection engines (often called plagiarism detection tools) have been built to help teachers. This article focuses only on plagiarism detection and presents a detailed systematic review of the field of source-code plagiarism detection in academia. This review gives an overview of definitions of plagiarism, plagiarism detection tools, comparison metrics, obfuscation methods, datasets used for comparison, and algorithm types. Perspectives on the meaning of source-code plagiarism detection in academia are presented, together with categorisations of the available detection tools and analyses of their effectiveness. While writing the review, some interesting insights have been found about metrics and datasets for quantitative tool comparison and categorisation of detection algorithms. Also, existing obfuscation methods classifications have been expanded together with a new definition of “source-code plagiarism detection in academia."
Izvorni jezik
Engleski
Znanstvena područja
Informacijske i komunikacijske znanosti
POVEZANOST RADA
Ustanove:
Fakultet organizacije i informatike, Varaždin,
Sveučilište u Zagrebu
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus