Pregled bibliografske jedinice broj: 1007055
Cone penetration data classification by Bayesian inversion with a Hidden Markov model
Cone penetration data classification by Bayesian inversion with a Hidden Markov model // Journal of physics. Conference series, 1104 (2018), 1; 012015, 14 doi:10.1088/1742-6596/1104/1/012015 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 1007055 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Cone penetration data classification by Bayesian inversion with a Hidden Markov model
Autori
Krogstad, Per-Åge ; Đepina, Ivan ; Omre, Henning
Izvornik
Journal of physics. Conference series (1742-6588) 1104
(2018), 1;
012015, 14
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
reservoirs ; seismic data ; elastic impedance
Sažetak
This study examines the application of the Hidden Markov model (HMM) to the soil classification based on Cone Penetration Test (CPT) measurements. The HMM is formulated in the Bayesian framework and composed of a Markov chain prior and a Gaussian likelihood model. The application of the Bayesian framework is considered as suitable because it allows for the integration of different sources of information commonly available in a CPTbased soil classification. The occurrence of different soil classes along a CPT profile is modeled with the Markov chain, while the Gaussian likelihood model establishes a relation between the different soil classes and CPT measurements. Preliminary performance of the HMM is examined on the classification of CPT measurements from the Sheringham Shoal Offshore Wind Farm.
Izvorni jezik
Engleski
Znanstvena područja
Građevinarstvo
POVEZANOST RADA
Ustanove:
Fakultet građevinarstva, arhitekture i geodezije, Split
Profili:
Ivan Đepina
(autor)
Citiraj ovu publikaciju:
Časopis indeksira:
- Scopus