Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1005971

Principal component regression vs. partial linear squares regression in prediction modelling


Jurina, Tamara; Šain, Adela; Valinger, Davor; Gajdoš Kljusurić, Jasenka; Benković, Maja; Jurinjak Tušek, Ana; Kurtanjek, Želimir; Antoška Knights, Vesna
Principal component regression vs. partial linear squares regression in prediction modelling // Book of Abstracts BIOSTAT 2019 – 24th International Scientific Symposium on Biometrics / Jazbec, Anamarija ; Pecina, Marija ; Sonicki, Zdenko ; Šimić, Diana ; Vedriš, Mislav ; Sović, Slavica (ur.).
Zagreb: Hrvatsko biometrijsko društvo, 2019. str. 30-30 (predavanje, recenziran, sažetak, znanstveni)


CROSBI ID: 1005971 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Principal component regression vs. partial linear squares regression in prediction modelling

Autori
Jurina, Tamara ; Šain, Adela ; Valinger, Davor ; Gajdoš Kljusurić, Jasenka ; Benković, Maja ; Jurinjak Tušek, Ana ; Kurtanjek, Želimir ; Antoška Knights, Vesna

Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, znanstveni

Izvornik
Book of Abstracts BIOSTAT 2019 – 24th International Scientific Symposium on Biometrics / Jazbec, Anamarija ; Pecina, Marija ; Sonicki, Zdenko ; Šimić, Diana ; Vedriš, Mislav ; Sović, Slavica - Zagreb : Hrvatsko biometrijsko društvo, 2019, 30-30

Skup
24th International Scientific Symposium on Biometrics (BIOSTAT 2019)

Mjesto i datum
Zagreb, Hrvatska, 05.06.2019. - 08.06.2019

Vrsta sudjelovanja
Predavanje

Vrsta recenzije
Recenziran

Ključne riječi
PLSR ; PCR ; prediction modelling

Sažetak
Principal component regression (PCR) and partial least squares regression (PLSR) are mostly used multivariate analysis tools in the chemometrics. Challenge is to analyse superiority of one over another. As example herbal extract of melissa was used in this study. On melissa extract samples spectra analysis (Ultraviolet–visible spectroscopy, UVVIS and near infrared spectroscopy, NIR) and the content of total phenols (TP) were performed. The UV and NIR absorbance spectra of the aqueous extracts were gathered at three temperatures (T = 40, 60 and 80°C) in time interval from 0.5 to 90 min and were subject of PCR and PLS models. Models were tested for UV spectra range, for NIR spectra range and for the UV+NIR spectra range and the models refinement procedure and validation was performed by cross-validation. For the model efficiency analysis parameters as R-squared, root mean squared error of prediction RMSE, adjusted R2, Ratio of standard error of Performance to standard Deviation (RPD) and the Range Error Ratio (RER) were used. R2is describing how well the experimental data fit the statistical model. RMSEP is used as the measure of the average accuracy of the prediction. The accuracy of the model is also compared on the basis of adjusted R2 in order to regulate the number of model parameters for the available spectra. The R2, RER and RPD are dimensionless, meaning that they can be compared on the same basis between models for different constituents/properties allowing model efficiency assessment. Higher RPD and RER values suggest more accurate models. Values of RPD and RER less then 3 and 10, respectively, are an indication of qualitative models ; while models with higher values are considered even to be used in quantitative prediction. When the selected wavelength region of UV-VIS and NIR were used separately, the PLS produced slightly better results (R2UV-VIS=0.973, RPDUV- VIS=6.123, RERUV-VIS=22.236) with RMSE=4.800. For the combined spectral range of UV-VIS and NIR (325-1699 nm) the PCR model produced better results (R2=0.999, RPD=3.138, RER=13.200 with the RMSE=11, 877). To comment the superiority of one model over another is not an easy task, because the dimensionless parameters and error(s), RMSE, did not show exactly the same trend. The R2was higher for the model with higher RMSE. The major difference between PLSR and PCR was in obtaining the higher number of factors for PCR, which is not a significant problem.

Izvorni jezik
Engleski

Znanstvena područja
Biotehnologija, Prehrambena tehnologija



POVEZANOST RADA


Ustanove:
Prehrambeno-biotehnološki fakultet, Zagreb


Citiraj ovu publikaciju:

Jurina, Tamara; Šain, Adela; Valinger, Davor; Gajdoš Kljusurić, Jasenka; Benković, Maja; Jurinjak Tušek, Ana; Kurtanjek, Želimir; Antoška Knights, Vesna
Principal component regression vs. partial linear squares regression in prediction modelling // Book of Abstracts BIOSTAT 2019 – 24th International Scientific Symposium on Biometrics / Jazbec, Anamarija ; Pecina, Marija ; Sonicki, Zdenko ; Šimić, Diana ; Vedriš, Mislav ; Sović, Slavica (ur.).
Zagreb: Hrvatsko biometrijsko društvo, 2019. str. 30-30 (predavanje, recenziran, sažetak, znanstveni)
Jurina, T., Šain, A., Valinger, D., Gajdoš Kljusurić, J., Benković, M., Jurinjak Tušek, A., Kurtanjek, Ž. & Antoška Knights, V. (2019) Principal component regression vs. partial linear squares regression in prediction modelling. U: Jazbec, A., Pecina, M., Sonicki, Z., Šimić, D., Vedriš, M. & Sović, S. (ur.)Book of Abstracts BIOSTAT 2019 – 24th International Scientific Symposium on Biometrics.
@article{article, author = {Jurina, Tamara and \v{S}ain, Adela and Valinger, Davor and Gajdo\v{s} Kljusuri\'{c}, Jasenka and Benkovi\'{c}, Maja and Jurinjak Tu\v{s}ek, Ana and Kurtanjek, \v{Z}elimir and Anto\v{s}ka Knights, Vesna}, year = {2019}, pages = {30-30}, keywords = {PLSR, PCR, prediction modelling}, title = {Principal component regression vs. partial linear squares regression in prediction modelling}, keyword = {PLSR, PCR, prediction modelling}, publisher = {Hrvatsko biometrijsko dru\v{s}tvo}, publisherplace = {Zagreb, Hrvatska} }
@article{article, author = {Jurina, Tamara and \v{S}ain, Adela and Valinger, Davor and Gajdo\v{s} Kljusuri\'{c}, Jasenka and Benkovi\'{c}, Maja and Jurinjak Tu\v{s}ek, Ana and Kurtanjek, \v{Z}elimir and Anto\v{s}ka Knights, Vesna}, year = {2019}, pages = {30-30}, keywords = {PLSR, PCR, prediction modelling}, title = {Principal component regression vs. partial linear squares regression in prediction modelling}, keyword = {PLSR, PCR, prediction modelling}, publisher = {Hrvatsko biometrijsko dru\v{s}tvo}, publisherplace = {Zagreb, Hrvatska} }




Contrast
Increase Font
Decrease Font
Dyslexic Font