Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1005922

Big data text mining in the financial sector


Pejić Bach, Mirjana; Krstić, Živko; Seljan, Sanja
Big data text mining in the financial sector // Expert systems in finance: smart financial applications in big data environments / Metawa, Noura ; Elhoseny, Mohamed ; Hassanien, Aboul Ella ; Hassan, M. Kabir (ur.).
London : Delhi: Routledge, 2019. str. 80-96 doi:10.4324/9780429024061


CROSBI ID: 1005922 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Big data text mining in the financial sector

Autori
Pejić Bach, Mirjana ; Krstić, Živko ; Seljan, Sanja

Vrsta, podvrsta i kategorija rada
Poglavlja u knjigama, znanstveni

Knjiga
Expert systems in finance: smart financial applications in big data environments

Urednik/ci
Metawa, Noura ; Elhoseny, Mohamed ; Hassanien, Aboul Ella ; Hassan, M. Kabir

Izdavač
Routledge

Grad
London : Delhi

Godina
2019

Raspon stranica
80-96

ISBN
9780429024061

Ključne riječi
big data ; text mining ; financial sector ; data science

Sažetak
: Big data technologies have a strong impact on different industries, which began in the last decade and continues nowadays, with the tendency to become omnipresent. The financial sector, as most of the other sectors, concentrated its operating activities mostly on the analysis of structured data. However, with the support of big data technologies, hidden information from semi-structured and unstructured data from various sources could be harvested. Recent research and practice indicates that such information can be interesting for the decision-making process. In this chapter, we discuss the impact of big data analytics to the financial sector with emphasis on analysis of textual data. We present several commonly used data-driven case studies adopted by different institutions from the financial sector that can be replicated in any institution, using textual data for gaining new valuable insights: keyword detection, name entity recognition, gender prediction, sentiment analysis, topic extraction, and social network analysis. Although we use original data from real financial case studies, the identity of financial institutions providing sources is not revealed.

Izvorni jezik
Engleski

Znanstvena područja
Ekonomija, Informacijske i komunikacijske znanosti



POVEZANOST RADA


Ustanove:
Ekonomski fakultet, Zagreb,
Filozofski fakultet, Zagreb

Profili:

Avatar Url Mirjana Pejić Bach (autor)

Avatar Url Sanja Seljan (autor)

Citiraj ovu publikaciju:

Pejić Bach, Mirjana; Krstić, Živko; Seljan, Sanja
Big data text mining in the financial sector // Expert systems in finance: smart financial applications in big data environments / Metawa, Noura ; Elhoseny, Mohamed ; Hassanien, Aboul Ella ; Hassan, M. Kabir (ur.).
London : Delhi: Routledge, 2019. str. 80-96 doi:10.4324/9780429024061
Pejić Bach, M., Krstić, Ž. & Seljan, S. (2019) Big data text mining in the financial sector. U: Metawa, N., Elhoseny, M., Hassanien, A. & Hassan, M. (ur.) Expert systems in finance: smart financial applications in big data environments. London : Delhi, Routledge, str. 80-96 doi:10.4324/9780429024061.
@inbook{inbook, author = {Peji\'{c} Bach, Mirjana and Krsti\'{c}, \v{Z}ivko and Seljan, Sanja}, year = {2019}, pages = {80-96}, DOI = {10.4324/9780429024061}, keywords = {big data, text mining, financial sector, data science}, doi = {10.4324/9780429024061}, isbn = {9780429024061}, title = {Big data text mining in the financial sector}, keyword = {big data, text mining, financial sector, data science}, publisher = {Routledge}, publisherplace = {London : Delhi} }
@inbook{inbook, author = {Peji\'{c} Bach, Mirjana and Krsti\'{c}, \v{Z}ivko and Seljan, Sanja}, year = {2019}, pages = {80-96}, DOI = {10.4324/9780429024061}, keywords = {big data, text mining, financial sector, data science}, doi = {10.4324/9780429024061}, isbn = {9780429024061}, title = {Big data text mining in the financial sector}, keyword = {big data, text mining, financial sector, data science}, publisher = {Routledge}, publisherplace = {London : Delhi} }

Časopis indeksira:


  • Scopus


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font