Pregled bibliografske jedinice broj: 1005329
Performance of Common Classifiers on node2vec Network Representations
Performance of Common Classifiers on node2vec Network Representations // Proceedings of the International Conference on Computers in Technical Systems MIPRO 2019 Opatija
Opatija, Hrvatska, 2019. str. 1071-1076 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 1005329 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Performance of Common Classifiers on node2vec Network Representations
Autori
Pozek, Mislav ; Sikic, Lucija ; Afric, Petar ; Kurdija, Adrian Satja ; Klemo, Vladimir ; Delac, Goran ; Silic, Marin
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
Proceedings of the International Conference on Computers in Technical Systems MIPRO 2019 Opatija
/ - , 2019, 1071-1076
Skup
42nd International ICT Convention MIPRO 2019
Mjesto i datum
Opatija, Hrvatska, 20.05.2019. - 24.05.2019
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
node2vec ; classification
Sažetak
In this paper we evaluate the performance of different multi-class classifiers on network graphs. Since the node embedding techniques have been widely used to represent and analyze networks structures, we decide to transform network data (nodes and links) into attributes which are descriptive and contain correct information of its structure. For this purpose, we use a state-of- the-art algorithmic framework node2vec, which has been shown to outperform other popular methods when applied to multi-label classification as it manages to efficiently learn a mapping of nodes to a low-dimensional space of features. Applying this framework, we generate a set of representations for nodes of multiple network data sets. Using the generated representations, we evaluate the performance of common classifiers. We perform cross-validation and parameter tuning to get the best possible model of each classifier type. To compare their performance, we computed Precision, Recall and F1-score for each model on each data set. Following that, the obtained results are analyzed and compared.
Izvorni jezik
Engleski
Znanstvena područja
Računarstvo
POVEZANOST RADA
Projekti:
HRZZ-IP-2018-01-6423 - Pouzdani kompozitni primjenski sustavi zasnovani na web uslugama (RELS) (Srbljić, Siniša, HRZZ ) ( CroRIS)
Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb
Profili:
Lucija Šikić
(autor)
Petar Afrić
(autor)
Marin Šilić
(autor)
Goran Delač
(autor)
Adrian Satja Kurdija
(autor)