Pregled bibliografske jedinice broj: 1004748
Regularity of intrinsically convex W^{;;2, 2};; surfaces and a derivation of a homogenized bending theory of convex shells
Regularity of intrinsically convex W^{;;2, 2};; surfaces and a derivation of a homogenized bending theory of convex shells // Journal de mathématiques pures et appliquées, 115 (2018), 1-23 doi:10.1016/j.matpur.2018.04.008 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 1004748 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Regularity of intrinsically convex W^{;;2, 2};;
surfaces and a derivation of a homogenized bending
theory of convex shells
Autori
Hornung, Peter ; Velčić, Igor
Izvornik
Journal de mathématiques pures et appliquées (0021-7824) 115
(2018);
1-23
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
Nonlinear elasticity ; Isometric immersions ; Homogenization ; Positive Gauss curvature ; Dimension reduction ; Bending theory
Sažetak
We prove interior regularity for isometric immersions of surfaces endowed with a smooth Riemannian metric of positive Gauss curvature. We then derive the Γ- limit of three dimensional nonlinear shells with inhomogeneous energy density, in the bending energy regime. This derivation is incomplete in that it requires an additional technical hypothesis
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Projekti:
HRZZ-UIP-2014-09-9477
Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb
Profili:
Igor Velčić
(autor)
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus