Pregled bibliografske jedinice broj: 1004541
Computer Vision Method in Beer Quality Evaluation- A Review
Computer Vision Method in Beer Quality Evaluation- A Review // Beverages, 5 (2019), 2; 38, 21 doi:10.3390/beverages5020038 (međunarodna recenzija, pregledni rad, znanstveni)
CROSBI ID: 1004541 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Computer Vision Method in Beer Quality Evaluation- A Review
Autori
Lukinac, Jasmina ; Mastanjević, Kristina ; Mastanjević, Krešimir ; Nakov, Gjore ; Jukić, Marko
Izvornik
Beverages (2306-5710) 5
(2019), 2;
38, 21
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, pregledni rad, znanstveni
Ključne riječi
beer ; computer vision ; image analysis ; quality
Sažetak
Beers are differentiated mainly according to their visual appearance and their fermentation process. The main quality characteristics of beer are appearance, aroma, flavor, and mouthfeel. Important visual attributes of beer are foam appearance (volume and persistence), as well as the color and clarity. To replace manual inspection, automatic, objective, rapid and repeatable external quality inspection systems, such as computer vision, are becoming very important and necessary. Computer vision is a non-contact optical technique, suitable for the non-destructive evaluation of the food product quality. Currently, the main application of computer vision occurs in automated inspection and measurement, allowing manufacturers to keep control of product quality. This paper presents an overview of the applications and the latest achievements of the computer vision methods in determining the external quality attributes of beer.
Izvorni jezik
Engleski
Znanstvena područja
Računarstvo, Biotehnologija, Prehrambena tehnologija
POVEZANOST RADA
Ustanove:
Prehrambeno-tehnološki fakultet, Osijek
Profili:
Jasmina Lukinac
(autor)
Kristina Mastanjević
(autor)
Marko Jukić
(autor)
Krešimir Mastanjević
(autor)
Citiraj ovu publikaciju:
Časopis indeksira:
- Web of Science Core Collection (WoSCC)
- Emerging Sources Citation Index (ESCI)