Pregled bibliografske jedinice broj: 1003253
Neural Networks for File Fragment Classification
Neural Networks for File Fragment Classification // MIPRO, 2019 Proceedings of the 42nd International Convention / Skala, Karolj (ur.).
Rijeka, 2019. str. 1395-1399 doi:10.23919/MIPRO.2019.8756878 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 1003253 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Neural Networks for File Fragment Classification
Autori
Vulinović, Kristijan ; Ivković, Lucija ; Petrović, Juraj ; Skračić, Kristian ; Pale, Predrag
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
MIPRO, 2019 Proceedings of the 42nd International Convention
/ Skala, Karolj - Rijeka, 2019, 1395-1399
Skup
42nd International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO 2019)
Mjesto i datum
Opatija, Hrvatska, 20.05.2019. - 24.05.2019
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
file fragment classification ; file type detection ; artificial neural network ; convolutional neural network ; feed forward neural network ; file type forensics
Sažetak
Abstract - File fragment classification is an important step in file forensics in which filetypes are assumed based on their available content fragments. Methods typically used for this task utilize machine learning techniques on features like byte frequency distributions and fragment entropy measures. In this paper, a contribution to this field is made through exploration of novel approaches to the problem including feedforward artificial neural networks and convolution networks. Feedforward neural networks were trained with byte histograms and with byte-pair histograms, while convolution neural networks were trained with blocks consisting of 512 bytes of data obtained from the GovDocs1 dataset. The results suggest convolution neural networks are not as promising for this problem as feedforward artificial neural networks, and feedforward artificial neural networks showing great results.
Izvorni jezik
Engleski
Znanstvena područja
Računarstvo
POVEZANOST RADA
Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb