Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1003253

Neural Networks for File Fragment Classification


Vulinović, Kristijan; Ivković, Lucija; Petrović, Juraj; Skračić, Kristian; Pale, Predrag
Neural Networks for File Fragment Classification // MIPRO, 2019 Proceedings of the 42nd International Convention / Skala, Karolj (ur.).
Rijeka, 2019. str. 1395-1399 doi:10.23919/MIPRO.2019.8756878 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)


CROSBI ID: 1003253 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Neural Networks for File Fragment Classification

Autori
Vulinović, Kristijan ; Ivković, Lucija ; Petrović, Juraj ; Skračić, Kristian ; Pale, Predrag

Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni

Izvornik
MIPRO, 2019 Proceedings of the 42nd International Convention / Skala, Karolj - Rijeka, 2019, 1395-1399

Skup
42nd International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO 2019)

Mjesto i datum
Opatija, Hrvatska, 20.05.2019. - 24.05.2019

Vrsta sudjelovanja
Predavanje

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
file fragment classification ; file type detection ; artificial neural network ; convolutional neural network ; feed forward neural network ; file type forensics

Sažetak
Abstract - File fragment classification is an important step in file forensics in which filetypes are assumed based on their available content fragments. Methods typically used for this task utilize machine learning techniques on features like byte frequency distributions and fragment entropy measures. In this paper, a contribution to this field is made through exploration of novel approaches to the problem including feedforward artificial neural networks and convolution networks. Feedforward neural networks were trained with byte histograms and with byte-pair histograms, while convolution neural networks were trained with blocks consisting of 512 bytes of data obtained from the GovDocs1 dataset. The results suggest convolution neural networks are not as promising for this problem as feedforward artificial neural networks, and feedforward artificial neural networks showing great results.

Izvorni jezik
Engleski

Znanstvena područja
Računarstvo



POVEZANOST RADA


Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb

Profili:

Avatar Url Predrag Pale (autor)

Avatar Url Kristian Skračić (autor)

Avatar Url Juraj Petrović (autor)

Poveznice na cjeloviti tekst rada:

doi ieeexplore.ieee.org

Citiraj ovu publikaciju:

Vulinović, Kristijan; Ivković, Lucija; Petrović, Juraj; Skračić, Kristian; Pale, Predrag
Neural Networks for File Fragment Classification // MIPRO, 2019 Proceedings of the 42nd International Convention / Skala, Karolj (ur.).
Rijeka, 2019. str. 1395-1399 doi:10.23919/MIPRO.2019.8756878 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
Vulinović, K., Ivković, L., Petrović, J., Skračić, K. & Pale, P. (2019) Neural Networks for File Fragment Classification. U: Skala, K. (ur.)MIPRO, 2019 Proceedings of the 42nd International Convention doi:10.23919/MIPRO.2019.8756878.
@article{article, author = {Vulinovi\'{c}, Kristijan and Ivkovi\'{c}, Lucija and Petrovi\'{c}, Juraj and Skra\v{c}i\'{c}, Kristian and Pale, Predrag}, editor = {Skala, K.}, year = {2019}, pages = {1395-1399}, DOI = {10.23919/MIPRO.2019.8756878}, keywords = {file fragment classification, file type detection, artificial neural network, convolutional neural network, feed forward neural network, file type forensics}, doi = {10.23919/MIPRO.2019.8756878}, title = {Neural Networks for File Fragment Classification}, keyword = {file fragment classification, file type detection, artificial neural network, convolutional neural network, feed forward neural network, file type forensics}, publisherplace = {Opatija, Hrvatska} }
@article{article, author = {Vulinovi\'{c}, Kristijan and Ivkovi\'{c}, Lucija and Petrovi\'{c}, Juraj and Skra\v{c}i\'{c}, Kristian and Pale, Predrag}, editor = {Skala, K.}, year = {2019}, pages = {1395-1399}, DOI = {10.23919/MIPRO.2019.8756878}, keywords = {file fragment classification, file type detection, artificial neural network, convolutional neural network, feed forward neural network, file type forensics}, doi = {10.23919/MIPRO.2019.8756878}, title = {Neural Networks for File Fragment Classification}, keyword = {file fragment classification, file type detection, artificial neural network, convolutional neural network, feed forward neural network, file type forensics}, publisherplace = {Opatija, Hrvatska} }

Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font