Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1002033

Mining Learning Management System Data Using Interpretable Neural Networks


Matetić, Maja
Mining Learning Management System Data Using Interpretable Neural Networks // 42nd International Convention MIPRO 2019, Business Intelligence Systems / Skala, Karolj (ur.).
Rijeka: Hrvatska udruga za informacijsku i komunikacijsku tehnologiju, elektroniku i mikroelektroniku - MIPRO, 2019. str. 1487-1492 doi:10.23919/MIPRO.2019.8757113 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)


CROSBI ID: 1002033 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Mining Learning Management System Data Using Interpretable Neural Networks

Autori
Matetić, Maja

Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni

Izvornik
42nd International Convention MIPRO 2019, Business Intelligence Systems / Skala, Karolj - Rijeka : Hrvatska udruga za informacijsku i komunikacijsku tehnologiju, elektroniku i mikroelektroniku - MIPRO, 2019, 1487-1492

Skup
42nd International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO 2019) ; Business Intelligence Systems (miproBIS 2019)

Mjesto i datum
Opatija, Hrvatska, 20.05.2019. - 24.05.2019

Vrsta sudjelovanja
Predavanje

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
Educational Data Mining, predicting student success, LMS system, Interpretability, Interpretable Machine Learning, model interpretation

Sažetak
The paper presents the work on data analysis of LMS data related to the course Programming 2, one of the introductory courses at the first year of the study of Informatics at the Department of Informatics of the University of Rijeka. In order to improve the course we analyze the data from the Learning Management System (LMS) with the emphasis on some additional activities which are not graded, such as watching video lectures. We are interested whether these activities have positive impact on the student success. The data analysis can objectively evaluate their role, the effect of improvement, and their impact on the learning process. The paper presents discovery of knowledge about the process of learning using batch data analysis performed by Artificial Neural Networks (ANNs). ANNs are not a common method in the field of educational data mining. Although highly accurate, the resulting black-box model is not interpretable, which is a major drawback. For the opening of the ANN black-box model, as well as for other models of this type, a number of agnostic methods have appeared recently, some of which we illustrate in the LMS system analysis.

Izvorni jezik
Engleski

Znanstvena područja
Računarstvo, Informacijske i komunikacijske znanosti



POVEZANOST RADA


Ustanove:
Fakultet informatike i digitalnih tehnologija, Rijeka

Profili:

Avatar Url Maja Matetić (autor)

Poveznice na cjeloviti tekst rada:

doi docs.mipro-proceedings.com

Citiraj ovu publikaciju:

Matetić, Maja
Mining Learning Management System Data Using Interpretable Neural Networks // 42nd International Convention MIPRO 2019, Business Intelligence Systems / Skala, Karolj (ur.).
Rijeka: Hrvatska udruga za informacijsku i komunikacijsku tehnologiju, elektroniku i mikroelektroniku - MIPRO, 2019. str. 1487-1492 doi:10.23919/MIPRO.2019.8757113 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
Matetić, M. (2019) Mining Learning Management System Data Using Interpretable Neural Networks. U: Skala, K. (ur.)42nd International Convention MIPRO 2019, Business Intelligence Systems doi:10.23919/MIPRO.2019.8757113.
@article{article, author = {Mateti\'{c}, Maja}, editor = {Skala, K.}, year = {2019}, pages = {1487-1492}, DOI = {10.23919/MIPRO.2019.8757113}, keywords = {Educational Data Mining, predicting student success, LMS system, Interpretability, Interpretable Machine Learning, model interpretation}, doi = {10.23919/MIPRO.2019.8757113}, title = {Mining Learning Management System Data Using Interpretable Neural Networks}, keyword = {Educational Data Mining, predicting student success, LMS system, Interpretability, Interpretable Machine Learning, model interpretation}, publisher = {Hrvatska udruga za informacijsku i komunikacijsku tehnologiju, elektroniku i mikroelektroniku - MIPRO}, publisherplace = {Opatija, Hrvatska} }
@article{article, author = {Mateti\'{c}, Maja}, editor = {Skala, K.}, year = {2019}, pages = {1487-1492}, DOI = {10.23919/MIPRO.2019.8757113}, keywords = {Educational Data Mining, predicting student success, LMS system, Interpretability, Interpretable Machine Learning, model interpretation}, doi = {10.23919/MIPRO.2019.8757113}, title = {Mining Learning Management System Data Using Interpretable Neural Networks}, keyword = {Educational Data Mining, predicting student success, LMS system, Interpretability, Interpretable Machine Learning, model interpretation}, publisher = {Hrvatska udruga za informacijsku i komunikacijsku tehnologiju, elektroniku i mikroelektroniku - MIPRO}, publisherplace = {Opatija, Hrvatska} }

Časopis indeksira:


  • Web of Science Core Collection (WoSCC)
    • Conference Proceedings Citation Index - Science (CPCI-S)
  • Scopus


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font