Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1001267

Multivariate statistical methods for spatial characterization of surface water quality


Lipoveci, Virgjina; Čurlin, Mirjana
Multivariate statistical methods for spatial characterization of surface water quality // International Conference on Science and Technology ICONST, 2018
Prizren, Kosovo, 2018. str. 55-55 (poster, međunarodna recenzija, sažetak, znanstveni)


CROSBI ID: 1001267 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Multivariate statistical methods for spatial characterization of surface water quality

Autori
Lipoveci, Virgjina ; Čurlin, Mirjana

Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, znanstveni

Izvornik
International Conference on Science and Technology ICONST, 2018 / - , 2018, 55-55

Skup
International Conference on Science and Technology ICONST, 2018

Mjesto i datum
Prizren, Kosovo, 05.09.2018. - 09.09.2018

Vrsta sudjelovanja
Poster

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
Water quality, statistical methods, Pearson`s correlations, cluster analysis (CA), Principal component analysis (PCA).

Sažetak
Introduction: The aim of this work is focused on spatial water quality classification based on the monitoring dataset for different location. Dataset for spatial classification of surface water consist of physico chemical water quality parameters monitored in monthly periods for seven locations. Material and Methods: For handling the dataset different chemometrics methods were employed, such as basic statistical methods, Pearson`s correlation coefficients, the principal component analysis (PCA) and cluster analysis (CA). Results: The obtained results show and explain the value movement of quality indicators in relation to the maximum permissible concentration prescribed in the Regulations as well as some significant correlation of individual variables for a specified period. Discussion: This study allows drawing out new information from the monitoring datasets such as patterns of similarity between different locations, sesonal behavior of physico-chemical contents and time trends. The implementation of these analyses is necessary for the preliminary study for water usage and healthcare protection of the population in the region.

Izvorni jezik
Engleski

Znanstvena područja
Kemijsko inženjerstvo



POVEZANOST RADA


Ustanove:
Prehrambeno-biotehnološki fakultet, Zagreb

Profili:

Avatar Url Mirjana Čurlin (autor)


Citiraj ovu publikaciju:

Lipoveci, Virgjina; Čurlin, Mirjana
Multivariate statistical methods for spatial characterization of surface water quality // International Conference on Science and Technology ICONST, 2018
Prizren, Kosovo, 2018. str. 55-55 (poster, međunarodna recenzija, sažetak, znanstveni)
Lipoveci, V. & Čurlin, M. (2018) Multivariate statistical methods for spatial characterization of surface water quality. U: International Conference on Science and Technology ICONST, 2018.
@article{article, author = {Lipoveci, Virgjina and \v{C}urlin, Mirjana}, year = {2018}, pages = {55-55}, keywords = {Water quality, statistical methods, Pearson`s correlations, cluster analysis (CA), Principal component analysis (PCA).}, title = {Multivariate statistical methods for spatial characterization of surface water quality}, keyword = {Water quality, statistical methods, Pearson`s correlations, cluster analysis (CA), Principal component analysis (PCA).}, publisherplace = {Prizren, Kosovo} }
@article{article, author = {Lipoveci, Virgjina and \v{C}urlin, Mirjana}, year = {2018}, pages = {55-55}, keywords = {Water quality, statistical methods, Pearson`s correlations, cluster analysis (CA), Principal component analysis (PCA).}, title = {Multivariate statistical methods for spatial characterization of surface water quality}, keyword = {Water quality, statistical methods, Pearson`s correlations, cluster analysis (CA), Principal component analysis (PCA).}, publisherplace = {Prizren, Kosovo} }




Contrast
Increase Font
Decrease Font
Dyslexic Font