Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1000317

Time-changed stochastic models: fractional Pearson diffusions and delayed continuous-time autoregressive processes


Papić, Ivan
Time-changed stochastic models: fractional Pearson diffusions and delayed continuous-time autoregressive processes, 2019., doktorska disertacija, Prirodoslovno-matematički fakultet, Zagreb


CROSBI ID: 1000317 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Time-changed stochastic models: fractional Pearson diffusions and delayed continuous-time autoregressive processes

Autori
Papić, Ivan

Vrsta, podvrsta i kategorija rada
Ocjenski radovi, doktorska disertacija

Fakultet
Prirodoslovno-matematički fakultet

Mjesto
Zagreb

Datum
08.01

Godina
2019

Stranica
150

Mentor
Leonenko, Nikolai ; Šuvak, Nenad

Ključne riječi
Pearson diffusions, fractional Pearson diffusions, spectral representation of transition density, correlation structure, correlated continuous time random walks, urn-scheme models, delayed continuous-time autoregressive processes, Caputo fractional derivative, Mittag-Leffler function, inverse of the standard stable subordinator ;

Sažetak
Prva osoba koja je uvela ideju slučajnih procesa u transformiranom vremenu korištenjem subordinatora, tj. transformaciju slučajnog procesa u novi slučajni proces putem slučajnog vremena dobivenog subordinatorom, bio je Bochner 1949. godine. To ujedno prestavlja početke stohastičkih modela u transformiranom vremenu. U posljednjih nekoliko desetljeća postoji snažan interes za stohastičke modele u transformiranom vremenu koji uključuju inverz standardnog stabilnog subordinatora umjesto samog subordinatora. Takvi modeli su interesantni jer mogu opisati periode vremena kada proces miruje. Također postoji snažna veza između frakcionalnog računa i slučajnih procesa dobivenih putem takvog slučajnog vremena. Naime, pokazuje se da vremenski-promijenjeni slučajni procesi, odnosno stohastički modeli u transformiranom vremenu, imaju funkcije gustoće koje rješavaju odgovarajuće frakcionalne diferencijalne jednadžbe. S druge strane, može se pokazati da su takvi stohastički modeli u transformiranom vremenu granični procesi odgo- varajućih (koreliranih) slučajnih šetnji u neprekidnom vremenu. Inače, slučajne šetnje u neprekidnom vremenu su često korišten alat u statističkoj fizici, gdje se koriste kao model gibanja čestica. Stoga, takvi modeli povezuju frakcionalne diferencijalne jednadžbe, odgođene slučajne procese i (korelirane) slučajne šetnje u neprekidnom vremenu i mogu biti korisni u raznim područjima. U ovom radu, proučavaju se dvije vrste stohastičkih mod- ela u transformiranom vremenu: frakcijske Pearsonove difuzije i odgođeni autoregresivni procesi u neprekidnom vremenu. U prvom dijelu rada analizirat će se frakcijske Pearsonove difuzije, tj. Pearsonove difuzije u transformiranom vremenu putem inverza standardnog stabilnog subordinatora. Eksplicitno će se izračunati spektralna reprezentacija prijelaznih funkcija gustoće frakci- jskih Pearsonovih difuzija s teškim repovima i jaka rješenja odgovarajućih vremenski - frakcionalnih Kolmogorovljevih jednadžbi unazad s pripadnim početnim uvjetom. Nadalje, na temelju korelacijske strukture frakcijskih Pearsonovih difuzija pokazat će se da su to stohastički modeli s dugoročnom zavisnošću. Također, uspostavit će se stohastičke diferencijalne jednadžbe koje opisuju frakcijske Pearsonove difuzije. U sljedećem koraku dokazat će se konvergencija specifično definiranih koreliranih slučajnih šetnji u neprekidnom vremenu prema frakcijskim Pearsonovim difuzijama. Konkretno, pokazat ćemo da se frakcijske Pearsonove difuzije koje nemaju teške repove mogu dobiti kao granični proces koreliranih slučajnih šetnji u neprekidnom vremenu koje su konstruirane i iii Sažetak motivirane poznatim modelima urni: Laplace- Bernoullijev i Wright-Fisherov model urni. S druge strane korelirane slučajne šetnje u neprekidnom vremenu koje kao granični proces imaju frakcijske Pearsonove difuzije s teškim repovima, nisu konstruirane na temelju nekog konkretnog modela. Dakle, Pearsonove difuzije u transformiranom vremenu pokazat će se kao stohastički model čije funkcije gustoće rješavaju odgovarajuće vremenski - frakcionalne Kolmogorovljeve jednadžbe unazad, a s druge strane su granični procesi odgovarajućih koreliranih slučajnih šetnji u neprekidnom vremenu. Na taj način, frakcijske Pearsonove difuzije se mogu interpretirati kao stohastički, frakcionalni i fizikalni model. U drugom dijelu rada razmatraju se odgođeni autoregresivni procesi u neprekidnom vremenu, pri čemu je pogonski proces Lévyjev proces, odnosno autoregresivni procesi u neprekidnom vremenu s pogonskim Lévyjevim procesom, koje je odgođeno inverzom standardnog stabilnog subordinatora. Na temelju generalnih i asimptotskih svojstava Mittag-Lefflerovih funkcija, bit će izračunata korelacijska struktura odgođenih autoregresivnih procesa u neprekidnom vremenu, a na temelju kojih će se ustvrditi da i ovi stohastički modeli u transformiranom vremenu imaju dugoročnu zavisnost. Također, bit će izvedena određena distribucijska svojstva.

Izvorni jezik
Engleski

Znanstvena područja
Matematika



POVEZANOST RADA


Ustanove:
Sveučilište u Osijeku, Odjel za matematiku

Profili:

Avatar Url Nenad Šuvak (mentor)

Avatar Url Ivan Papić (autor)

Poveznice na cjeloviti tekst rada:

dr.nsk.hr

Citiraj ovu publikaciju:

Papić, Ivan
Time-changed stochastic models: fractional Pearson diffusions and delayed continuous-time autoregressive processes, 2019., doktorska disertacija, Prirodoslovno-matematički fakultet, Zagreb
Papić, I. (2019) 'Time-changed stochastic models: fractional Pearson diffusions and delayed continuous-time autoregressive processes', doktorska disertacija, Prirodoslovno-matematički fakultet, Zagreb.
@phdthesis{phdthesis, author = {Papi\'{c}, Ivan}, year = {2019}, pages = {150}, keywords = {Pearson diffusions, fractional Pearson diffusions, spectral representation of transition density, correlation structure, correlated continuous time random walks, urn-scheme models, delayed continuous-time autoregressive processes, Caputo fractional derivative, Mittag-Leffler function, inverse of the standard stable subordinator, }, title = {Time-changed stochastic models: fractional Pearson diffusions and delayed continuous-time autoregressive processes}, keyword = {Pearson diffusions, fractional Pearson diffusions, spectral representation of transition density, correlation structure, correlated continuous time random walks, urn-scheme models, delayed continuous-time autoregressive processes, Caputo fractional derivative, Mittag-Leffler function, inverse of the standard stable subordinator, }, publisherplace = {Zagreb} }
@phdthesis{phdthesis, author = {Papi\'{c}, Ivan}, year = {2019}, pages = {150}, keywords = {Pearson diffusions, fractional Pearson diffusions, spectral representation of transition density, correlation structure, correlated continuous time random walks, urn-scheme models, delayed continuous-time autoregressive processes, Caputo fractional derivative, Mittag-Leffler function, inverse of the standard stable subordinator, }, title = {Time-changed stochastic models: fractional Pearson diffusions and delayed continuous-time autoregressive processes}, keyword = {Pearson diffusions, fractional Pearson diffusions, spectral representation of transition density, correlation structure, correlated continuous time random walks, urn-scheme models, delayed continuous-time autoregressive processes, Caputo fractional derivative, Mittag-Leffler function, inverse of the standard stable subordinator, }, publisherplace = {Zagreb} }




Contrast
Increase Font
Decrease Font
Dyslexic Font