Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1000177

Statistical modelling of crop yield in Central Europe using climate data and remote sensing vegetation indices


Kern, Anikó; Barcza, Zoltán; Marjanović, Hrvoje; Árendás, Tamás; Fodor, Nándor; Bónis, Péter; Bognár, Péter; Lichtenberger, János
Statistical modelling of crop yield in Central Europe using climate data and remote sensing vegetation indices // Agricultural and forest meteorology, 260-261 (2018), 300-320 doi:10.1016/j.agrformet.2018.06.009 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1000177 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Statistical modelling of crop yield in Central Europe using climate data and remote sensing vegetation indices

Autori
Kern, Anikó ; Barcza, Zoltán ; Marjanović, Hrvoje ; Árendás, Tamás ; Fodor, Nándor ; Bónis, Péter ; Bognár, Péter ; Lichtenberger, János

Izvornik
Agricultural and forest meteorology (0168-1923) 260-261 (2018); 300-320

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
crop yield ; statistical modelling ; yield forecast ; climate variability ; remote sensing ; MODIS NDVI

Sažetak
In the present study, multiple linear regression models were constructed to simulate the yield of winter wheat, rapeseed, maize and sunflower in Hungary for the 2000–2016 time period. We used meteorological data and soil water content from meteorological reanalysis as predictors of the models in monthly resolution. We included annual fertilizer amount in the analysis to remove trend from the census data. We also used remote sensing based vegetation index to extend the approach for early crop yield forecast purposes and to study the added value of proxy data on the predictive power of the statistical models. Using a stepwise linear regression-like method the most appropriate models were selected based on the statistical evaluation of the model fitting. We provided simple equations with well interpretable coefficients that can estimate crop yield with high accuracy. Crossvalidated explained variance were 67% for winter wheat, 76% for rapeseed, 81% for maize and 68.5% for sunflower. The modelling exercise showed that positive anomaly of minimum temperature in May has a substantial negative effect on the final crop yield for all four crops. For winter wheat increasing maximum temperature in May has a beneficial effect, while higher-than- usual vapour pressure deficit in May decreases yield. For maize soil water content in July and August is crucial in terms of the final yield. Incorporation of the vegetation index improved the predictive power of the models at country scale, with 10%, 2% and 4% for winter wheat, rapeseed and maize, respectively. At the county level, remote sensing data improved the overall predictive power of the models only for winter wheat. The results provide simple yet robust models for spatially explicit yield forecast as well as yield projection for the near future.

Izvorni jezik
Engleski

Znanstvena područja
Geofizika, Poljoprivreda (agronomija), Interdisciplinarne biotehničke znanosti



POVEZANOST RADA


Projekti:
UIP-2013-11-2492 - Procjena i predviđanje produktivnosti šumskog ekosustava objedinjavanjem terenskih izmjera, daljinskih istraživanja i modeliranja (EFFEctivity) (Marjanović, Hrvoje, HRZZ - 2013-11) ( CroRIS)

Ustanove:
Hrvatski šumarski institut, Jastrebarsko

Profili:

Avatar Url Hrvoje Marjanović (autor)

Poveznice na cjeloviti tekst rada:

doi www.sciencedirect.com

Citiraj ovu publikaciju:

Kern, Anikó; Barcza, Zoltán; Marjanović, Hrvoje; Árendás, Tamás; Fodor, Nándor; Bónis, Péter; Bognár, Péter; Lichtenberger, János
Statistical modelling of crop yield in Central Europe using climate data and remote sensing vegetation indices // Agricultural and forest meteorology, 260-261 (2018), 300-320 doi:10.1016/j.agrformet.2018.06.009 (međunarodna recenzija, članak, znanstveni)
Kern, A., Barcza, Z., Marjanović, H., Árendás, T., Fodor, N., Bónis, P., Bognár, P. & Lichtenberger, J. (2018) Statistical modelling of crop yield in Central Europe using climate data and remote sensing vegetation indices. Agricultural and forest meteorology, 260-261, 300-320 doi:10.1016/j.agrformet.2018.06.009.
@article{article, author = {Kern, Anik\'{o} and Barcza, Zolt\'{a}n and Marjanovi\'{c}, Hrvoje and \'{A}rend\'{a}s, Tam\'{a}s and Fodor, N\'{a}ndor and B\'{o}nis, P\'{e}ter and Bogn\'{a}r, P\'{e}ter and Lichtenberger, J\'{a}nos}, year = {2018}, pages = {300-320}, DOI = {10.1016/j.agrformet.2018.06.009}, keywords = {crop yield, statistical modelling, yield forecast, climate variability, remote sensing, MODIS NDVI}, journal = {Agricultural and forest meteorology}, doi = {10.1016/j.agrformet.2018.06.009}, volume = {260-261}, issn = {0168-1923}, title = {Statistical modelling of crop yield in Central Europe using climate data and remote sensing vegetation indices}, keyword = {crop yield, statistical modelling, yield forecast, climate variability, remote sensing, MODIS NDVI} }
@article{article, author = {Kern, Anik\'{o} and Barcza, Zolt\'{a}n and Marjanovi\'{c}, Hrvoje and \'{A}rend\'{a}s, Tam\'{a}s and Fodor, N\'{a}ndor and B\'{o}nis, P\'{e}ter and Bogn\'{a}r, P\'{e}ter and Lichtenberger, J\'{a}nos}, year = {2018}, pages = {300-320}, DOI = {10.1016/j.agrformet.2018.06.009}, keywords = {crop yield, statistical modelling, yield forecast, climate variability, remote sensing, MODIS NDVI}, journal = {Agricultural and forest meteorology}, doi = {10.1016/j.agrformet.2018.06.009}, volume = {260-261}, issn = {0168-1923}, title = {Statistical modelling of crop yield in Central Europe using climate data and remote sensing vegetation indices}, keyword = {crop yield, statistical modelling, yield forecast, climate variability, remote sensing, MODIS NDVI} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font