Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 990932

Hyperspectral sensing of soil pH, total carbon and total nitrogen content based on linear and non-linear calibration methods


Šestak, Ivana; Mihaljevski Boltek, Lea; Mesić, Milan; Zgorelec, Željka; Perčin, Aleksandra
Hyperspectral sensing of soil pH, total carbon and total nitrogen content based on linear and non-linear calibration methods // Journal of central European agriculture, 20 (2019), 1; 504-523 doi:/10.5513/JCEA01/20.1.2158 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 990932 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Hyperspectral sensing of soil pH, total carbon and total nitrogen content based on linear and non-linear calibration methods

Autori
Šestak, Ivana ; Mihaljevski Boltek, Lea ; Mesić, Milan ; Zgorelec, Željka ; Perčin, Aleksandra

Izvornik
Journal of central European agriculture (1332-9049) 20 (2019), 1; 504-523

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
neural networks ; partial least squares regression ; reflectance spectroscopy ; soil carbon and nitrogen content ; soil pH

Sažetak
Soil properties can be estimated non destructively by visible and near infrared (VNIR) reflectance spectroscopy. However, results of calibration models differ in dependence of measurement precision, spectral range, variability of soil properties and calibration methods used for prediction. The objective of research was to estimate the ability of hyperspectral VNIR sensing for field-scale prediction of soil pH, total carbon (TC, %) and total nitrogen (TN, %) content in arable Stagnosols. Total of 200 soil samples taken from field experiment (soil depth: 30 cm ; sampling grid: 15x15 m ; 2016) was scanned in laboratory using portable spectroradiometer (FieldSpec®3, 350-1, 050 nm). Partial least squares regression (PLSR) and artificial neural networks (ANN) were used to build prediction models of selected soil properties based on VNIR spectra (P<0.05). Very strong to complete correlation and low root mean squared error was obtained between predicted and measured values for the calibration and validation dataset, and both prediction methods (PLSR validation: TC, %: R2=0.85, RMSE=0.163 ; TN, %: R2=0.76, RMSE=0.018 ; soil pH: R2=0.69, RMSE=0.55 ; ANN validation: TC, %: R2=0.88, RMSE=0.108 ; TN, %: R2=0.86, RMSE=0.012 ; soil pH: R2=0.74, RMSE=0.42). ANN models were more efficient in capturing the complex link between selected soil properties and soil reflectance spectra than PLSR. Calibrations defined in this research should help to support site-specific soil survey as addition to standard laboratory analysis.

Izvorni jezik
Engleski

Znanstvena područja
Poljoprivreda (agronomija)



POVEZANOST RADA


Projekti:
178-1780692-0695 - Gnojidba dušikom prihvatljiva za okoliš (Mesić, Milan, MZOS ) ( CroRIS)

Ustanove:
Agronomski fakultet, Zagreb

Profili:

Avatar Url Ivana Šestak (autor)

Avatar Url Željka Zgorelec (autor)

Avatar Url Milan Mesić (autor)

Poveznice na cjeloviti tekst rada:

doi jcea.agr.hr

Citiraj ovu publikaciju:

Šestak, Ivana; Mihaljevski Boltek, Lea; Mesić, Milan; Zgorelec, Željka; Perčin, Aleksandra
Hyperspectral sensing of soil pH, total carbon and total nitrogen content based on linear and non-linear calibration methods // Journal of central European agriculture, 20 (2019), 1; 504-523 doi:/10.5513/JCEA01/20.1.2158 (međunarodna recenzija, članak, znanstveni)
Šestak, I., Mihaljevski Boltek, L., Mesić, M., Zgorelec, Ž. & Perčin, A. (2019) Hyperspectral sensing of soil pH, total carbon and total nitrogen content based on linear and non-linear calibration methods. Journal of central European agriculture, 20 (1), 504-523 doi:/10.5513/JCEA01/20.1.2158.
@article{article, author = {\v{S}estak, Ivana and Mihaljevski Boltek, Lea and Mesi\'{c}, Milan and Zgorelec, \v{Z}eljka and Per\v{c}in, Aleksandra}, year = {2019}, pages = {504-523}, DOI = {/10.5513/JCEA01/20.1.2158}, keywords = {neural networks, partial least squares regression, reflectance spectroscopy, soil carbon and nitrogen content, soil pH}, journal = {Journal of central European agriculture}, doi = {/10.5513/JCEA01/20.1.2158}, volume = {20}, number = {1}, issn = {1332-9049}, title = {Hyperspectral sensing of soil pH, total carbon and total nitrogen content based on linear and non-linear calibration methods}, keyword = {neural networks, partial least squares regression, reflectance spectroscopy, soil carbon and nitrogen content, soil pH} }
@article{article, author = {\v{S}estak, Ivana and Mihaljevski Boltek, Lea and Mesi\'{c}, Milan and Zgorelec, \v{Z}eljka and Per\v{c}in, Aleksandra}, year = {2019}, pages = {504-523}, DOI = {/10.5513/JCEA01/20.1.2158}, keywords = {neural networks, partial least squares regression, reflectance spectroscopy, soil carbon and nitrogen content, soil pH}, journal = {Journal of central European agriculture}, doi = {/10.5513/JCEA01/20.1.2158}, volume = {20}, number = {1}, issn = {1332-9049}, title = {Hyperspectral sensing of soil pH, total carbon and total nitrogen content based on linear and non-linear calibration methods}, keyword = {neural networks, partial least squares regression, reflectance spectroscopy, soil carbon and nitrogen content, soil pH} }

Časopis indeksira:


  • Web of Science Core Collection (WoSCC)
    • Emerging Sources Citation Index (ESCI)
  • Scopus


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font