Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 989801

One-scale H-distributions


Antonić, Nenad; Erceg, Marko
One-scale H-distributions // International Conference on Generalised Functions - Book of abstracts
Dubrovnik, Hrvatska, 2016. str. 27-27 (predavanje, međunarodna recenzija, sažetak, znanstveni)


CROSBI ID: 989801 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
One-scale H-distributions

Autori
Antonić, Nenad ; Erceg, Marko

Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, znanstveni

Izvornik
International Conference on Generalised Functions - Book of abstracts / - , 2016, 27-27

Skup
International conference on generalised functions (GF2016)

Mjesto i datum
Dubrovnik, Hrvatska, 04.09.2016. - 09.09.2016

Vrsta sudjelovanja
Predavanje

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
H-measures ; H-distributins ; localisation principle ; semiclassical measures ; characteristic length ; Fourier multipliers

Sažetak
Microlocal defect functionals (H-measures, H-distributions, semiclassical measures etc.) are objects which determine, in some sense, the lack of strong compactness for weakly convergent ${; ; \rm L}; ; ^p$ sequences. In contrast to the semiclassical measures, H-measures are not suitable to treat problems with a characteristic length (e.g.~thickness of a plate), while more recant variants, one-scale H-measures [1, 3], have property of being extension of both H-measures and semiclassical measures. However, H-measures, as well as one-scale H-measures, are adequate only for the ${; ; \rm L}; ; ^2$ framework. As the generalisation of H-measures to the ${; ; \rm L}; ; ^p-{; ; \rm L}; ; ^{; ; p'}; ; $ setting has already been constructed via H-distributions [2], here we introduce objects which extends the notion of one-scale H-measures, {; ; \sl one-scale H-distributions}; ; , as a counterpart of H-distributions with a characteristic length. Moreover, we address some important features and develop the corresponding localisation principle. [1] N. Antonić, M. Erceg, M. Lazar, Localisation principle for one-scale H-measures, arXiv:1504.03956 (2015) 32 pp. [2] N. Antonić, D. Mitrović, H-distributions: an extension of H-measures to an ${; ; \rm L}; ; ^p-{; ; \rm L}; ; ^q$ setting, Abs.~Appl.~Analysis {; ; \bf 2011}; ; Article ID 901084 (2011) 12 pp. [3] L. Tartar, Multi-scale H-measures, Discrete and Continuous Dynamical Systems, S {; ; \bf 8}; ; (2015), 77--90.

Izvorni jezik
Engleski

Znanstvena područja
Matematika



POVEZANOST RADA


Projekti:
HRZZ-IP-2013-11-9780 - Metode slabih convergencija i primjene (WeConMApp) (Antonić, Nenad, HRZZ - 2013-11) ( CroRIS)

Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb,
Prirodoslovno-matematički fakultet, Zagreb

Profili:

Avatar Url Marko Erceg (autor)

Avatar Url Nenad Antonić (autor)

Poveznice na cjeloviti tekst rada:

Pristup cjelovitom tekstu rada web.math.pmf.unizg.hr

Citiraj ovu publikaciju:

Antonić, Nenad; Erceg, Marko
One-scale H-distributions // International Conference on Generalised Functions - Book of abstracts
Dubrovnik, Hrvatska, 2016. str. 27-27 (predavanje, međunarodna recenzija, sažetak, znanstveni)
Antonić, N. & Erceg, M. (2016) One-scale H-distributions. U: International Conference on Generalised Functions - Book of abstracts.
@article{article, author = {Antoni\'{c}, Nenad and Erceg, Marko}, year = {2016}, pages = {27-27}, keywords = {H-measures, H-distributins, localisation principle, semiclassical measures, characteristic length, Fourier multipliers}, title = {One-scale H-distributions}, keyword = {H-measures, H-distributins, localisation principle, semiclassical measures, characteristic length, Fourier multipliers}, publisherplace = {Dubrovnik, Hrvatska} }
@article{article, author = {Antoni\'{c}, Nenad and Erceg, Marko}, year = {2016}, pages = {27-27}, keywords = {H-measures, H-distributins, localisation principle, semiclassical measures, characteristic length, Fourier multipliers}, title = {One-scale H-distributions}, keyword = {H-measures, H-distributins, localisation principle, semiclassical measures, characteristic length, Fourier multipliers}, publisherplace = {Dubrovnik, Hrvatska} }




Contrast
Increase Font
Decrease Font
Dyslexic Font