Pregled bibliografske jedinice broj: 989801
One-scale H-distributions
One-scale H-distributions // International Conference on Generalised Functions - Book of abstracts
Dubrovnik, Hrvatska, 2016. str. 27-27 (predavanje, međunarodna recenzija, sažetak, znanstveni)
CROSBI ID: 989801 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
One-scale H-distributions
Autori
Antonić, Nenad ; Erceg, Marko
Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, znanstveni
Izvornik
International Conference on Generalised Functions - Book of abstracts
/ - , 2016, 27-27
Skup
International conference on generalised functions (GF2016)
Mjesto i datum
Dubrovnik, Hrvatska, 04.09.2016. - 09.09.2016
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
H-measures ; H-distributins ; localisation principle ; semiclassical measures ; characteristic length ; Fourier multipliers
Sažetak
Microlocal defect functionals (H-measures, H-distributions, semiclassical measures etc.) are objects which determine, in some sense, the lack of strong compactness for weakly convergent ${; ; \rm L}; ; ^p$ sequences. In contrast to the semiclassical measures, H-measures are not suitable to treat problems with a characteristic length (e.g.~thickness of a plate), while more recant variants, one-scale H-measures [1, 3], have property of being extension of both H-measures and semiclassical measures. However, H-measures, as well as one-scale H-measures, are adequate only for the ${; ; \rm L}; ; ^2$ framework. As the generalisation of H-measures to the ${; ; \rm L}; ; ^p-{; ; \rm L}; ; ^{; ; p'}; ; $ setting has already been constructed via H-distributions [2], here we introduce objects which extends the notion of one-scale H-measures, {; ; \sl one-scale H-distributions}; ; , as a counterpart of H-distributions with a characteristic length. Moreover, we address some important features and develop the corresponding localisation principle. [1] N. Antonić, M. Erceg, M. Lazar, Localisation principle for one-scale H-measures, arXiv:1504.03956 (2015) 32 pp. [2] N. Antonić, D. Mitrović, H-distributions: an extension of H-measures to an ${; ; \rm L}; ; ^p-{; ; \rm L}; ; ^q$ setting, Abs.~Appl.~Analysis {; ; \bf 2011}; ; Article ID 901084 (2011) 12 pp. [3] L. Tartar, Multi-scale H-measures, Discrete and Continuous Dynamical Systems, S {; ; \bf 8}; ; (2015), 77--90.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Projekti:
HRZZ-IP-2013-11-9780 - Metode slabih convergencija i primjene (WeConMApp) (Antonić, Nenad, HRZZ - 2013-11) ( CroRIS)
Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb,
Prirodoslovno-matematički fakultet, Zagreb