Pregled bibliografske jedinice broj: 988118
Support Vector Machine State Estimation
Support Vector Machine State Estimation // Applied artificial intelligence, 33 (2019), 6; 517-530 doi:10.1080/08839514.2019.1583452 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 988118 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Support Vector Machine State Estimation
Autori
Kirinčić, Vedran ; Čeperić, Ervin ; Vlahinić, Saša ; Lerga, Jonatan
Izvornik
Applied artificial intelligence (0883-9514) 33
(2019), 6;
517-530
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
Vector support machine ; state estimation
Sažetak
The power system state estimator based on the support vector machine (SVM) and the weighted least squares (WLS) method is presented in the paper. The WLS provides state estimations necessary for creating SVM model which is then used for state estimation. The developed algorithm was tested on the IEEE systems, and the performance indicators were calculated in order to compare the accuracy of estimation and the measurement error filtering. The results indicate that the proposed hybrid model outperforms the classical WLS-based state estimation in terms of accuracy and improves measurement error filtering in comparison to the classical estimator.
Izvorni jezik
Engleski
Znanstvena područja
Elektrotehnika, Računarstvo
POVEZANOST RADA
Projekti:
HRZZ-IP-2018-01-3739 - Sustav potpore odlučivanju za zeleniju i sigurniju plovidbu brodova (DESSERT) (Prpić-Oršić, Jasna, HRZZ - 2018-01) ( CroRIS)
Ustanove:
Tehnički fakultet, Rijeka
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus
Uključenost u ostale bibliografske baze podataka::
- Computer and Information Systems Abstracts
- INSPEC
- Pollution Abstracts
- PsychINFO