ࡱ> =?<Kq Cbjbjt+t+ 0fAA=]8 $.D ":::yyy  $* !yuyyy ::;y:: y T :m ,tJ :r$ E7 Effects of aquifer heterogeneity on the intrusion of sea water H. Gotovac 1, R. Andri evi 2 and M. Vranjea1 1 Civil Engineering Department, University of Split, Croatia 2 Desert Research Institute, Las Vegas, Nevada, USA ABSTRACT In this study we examined the effects of geologic heterogeneity upon the seawater intrusion in coastal aquifers. Subsurface formations display spatial variability of the permeability such that it changes in an irregular manner in space over scales much larger than the pore scale. We describe hydraulic conductivity as random and characterize it statistically. The study domain is hypothetical aquifer with the properties similar to the actual case study of the Nitzanim aquifer in Israel. 100 realizations of the heterogeneous aquifer are generated and seawater intrusion problem using numerical code SUTRA [Voss, 1984] is solved. The results are statistically analyzed and compared to the common deterministic solution with homogeneous domain and macrodispersion coefficient. We examined the shape of the transition zone, intrusion length and salt concentration uncertainty as a result of aquifer heterogeneity. The results indicate that aquifer heterogeneity does affect the shape of the transition zone and shifts the zone inland compared to the deterministic solution with macrodispersion. The concentration uncertainty is more pronounced in the front of the transition zone and increases with depth. INTRODUCTION Seawater intrusion problems are becoming very important water management issues in coastal regions. As salt water intrudes the coastal aquifer, the groundwater abstraction, especially close to the coastline, becomes saline and remediation measures have to be taken. Since the saline and brackish water cannot be used directly for water supply and agriculture, often desalinization or artificial recharge is attempted to resolve the situation. These actions, particularly desalinization, are very expensive measures directly related to the salinity level in the pumped groundwater. When designing the exploitation of fresh groundwater in coastal aquifers it is important to predict the possible salt concentration level for different pumping scenarios. The salt concentration in the abstracted water will depend, besides system dynamics and considered processes, also on the aquifer geologic heterogeneity through which all physical processes are taking place. The recent advances in solute transport in aquifers are not directly applicable in saltwater intrusion cases because of coupled flow and transport problem. The saltwater intrusion problems are commonly treated either using the sharp interface models often employing analytical tools or applying transition zone models using numerical modeling. Subsurface geologic variability and dual density between fresh water and salt water in reality creates the transition zone between seawater and fresh inland water. In coastal regions, within that transition zone most groundwater management is usually taking place. Heterogeneity aspect on saltwater intrusion is not yet fully analyzed and remains one important topic for future studies. In this article we will examine some aspects of spatial variability and their effect on saltwater intrusion prediction. We describe hydraulic conductivity field as a random field and generate 100 aquifer realizations in vertical plane. For each realization, the saltwater intrusion case is solved and results are analyzed statistically. In this study we focus on following issues; (1) comparison between stochastic solution based on Monte Carlo method of 100 aquifer realizations and homogeneous aquifer with macrodispersion coefficient (deterministic solution), (2) distribution of water fluxes (fresh water and salt water) on vertical cross sections within the transition zone and (3) uncertainty in the transition zone position and salt concentration uncertainty within the transition zone. STATEMENT OF THE PROBLEM  EMBED Equation.3 The presented domain is a vertical cross section perpendicular to the coastline extending 1064m in length and 64m in depth. Seawater concentration is considered in total dissolved solids (TDS) and spatial discretization is selected with  EMBED Equation.3 and  EMBED Equation.3 . All other parameters are actual data from the Nitzanim coastal aquifer in Israel [Berglund et al., 2000]. We also consider a uniform amount of natural recharge of 0.20m/year that represents 40% of precipitation in that region. Table 1 summarizes necessary input data for the numerical simulation. The initial and boundary conditions are presented in Fig. 1. The choice of dispersivity is a lower bound based on grid Peclet number requirement. ParameterValueSeawater concentration35 000 ppm TDSFreshwater concentration100 ppm TDSSeawater density, (s1025.0 kg/m3Freshwater density, (f1000 kg/m3Density change d( / dC700 kg2/(kg TDS m3)Geometric mean hydraulic conductivity, KG1.75 ( 10-4 m/sLongitudinal dispersivity, ( L4.0 (16.0) mTransverse dispersivity, ( T0.5 (1.60) mMolecular diffusivity of solute in water, Dm1 ( 10-9 m2/sSpecific yield Natural recharge,  EMBED Equation.3 0.36 0.20 m/year Table 1. Input parameters For the stochastic simulation we generated hydraulic conductivity field on the selected grid resolution using Hydro_gen [Bellin and Rubin, 1996] with estimated (based on actual data) ln-K statistics with geometric mean of  EMBED Equation.3 , variance  EMBED Equation.3  and anisotropic integral scales of 32m and 16m in horizontal and vertical direction, respectively.  Figure 1. Domain and boundary conditions The coupled flow and transport problem is solved in each of 100 realizations of the K-field using numerical code SUTRA [Voss, 1984]. The output results are processed to evaluate the uncertainty in transition zone displacement and salt concentration. RESULTS TOTAL FLUX BUDGET distribution of water and solute fluxes on vertical cross sections near the coastline presents important discharge characteristics. Along the vertical cross section near the seepage face the fluxes are distributed commonly as outlined on the sketch on Fig. 3. Fresh groundwater is discharging mixed with the saline water flux that has originally intruded the aquifer and then is returning towards the sea. Both fluxes are out flowing the aquifer through the seepage face whose size will depend on system dynamic and heterogeneity level of the aquifer. We have analyzed three vertical cross sections at x=0, 250, 500 m. At the vertical plane closest to the coastline (x=0), the water flux has a significant negative component (direction towards sea) that results in the seepage face at the sea bottom. Total freshwater discharge by outflow at the sea bottom is roughly equal to the groundwater flux imposed by hydraulic gradient (including recharge if any) plus water flux as a density driven flow at the aquifer bottom. The result is an increase of the volume of saline water and a decrease of the volume of fresh groundwater in the aquifer.  Figure 3. Distribution of water and solute flux along the depth for three defined vertical cross - sections. The comparison between deterministic and stochastic component indicates that stochastic solution has shorter vertical span of the negative flux and in magnitude smaller positive flux in the rest of the vertical cross section. Other two vertical planes, further inland, equilibrate water fluxes and at x=500m both solutions show constant flux along the vertical that is equal to the groundwater flux due to the imposed hydraulic gradient. The solute flux at the vertical cross section on the coastline shows a positive component that intrudes the aquifer, get mixed with fresh water and discharges back reduced level of saline water through the seepage face. Stochastic solution behaves similarly as with water fluxes and quickly inland equilibrates at zero solute flux. TRANSITION ZONE DISPLACEMENT STATISTICS The transition zone is formed as a result of mixing of the solute flux intruding the aquifer bottom and the fresh water flux discharging through the seepage face at the sea bottom. The shape of transition zone and its extent is described with three characteristic contours representing the seawater concentration (35000 ppm), half the seawater concentration (17500 ppm) and fresh water background concentration (100 ppm). Fig. 3 shows the set of contours describing the transition zone in the steady state for deterministic and stochastic case (mean displacement). On the average the stochastic case (based on 100 heterogeneous aquifer realizations) displays larger intrusion at the bottom of the aquifer but with a narrower transition zone. The key difference is in the position of the seawater contour (35000 ppm) that has migrated inland 200 m more in the stochastic case. We contribute this finding to the difference between the deterministic solution with macrodispersion coefficient that applies immediately contrary to the stochastic solution that experience dispersion through the velocity variations slowly as the transition zone develops through time.  Figure 3. Steady state transition zone for deterministic and stochastic solution Fig. 4 displays the intrusion length at the bottom of aquifer as a transient process. The stochastic solution needs longer time to reach the steady state, which is more pronounced in the front of the transition zone.  Figure 4. Intrusion length development for three contours through time The transition zone displacement uncertainty is shown on Fig. 5. Displacement uncertainty is more pronounced in the front of the transition zone (100 ppm contour) at all depths. The other two concentration levels exhibit the uncertainty increasing from very small at the sea bottom to a similar level at the aquifer bottom. Due to the uncertainty in the seepage face size the uncertainty will never go to zero at the sea bottom unless the sharp interface assumption is adopted [Dagan & Zeitoun, 1999]. This distribution of concentration within the seepage face and its uncertainty in size is very important fresh water discharge characteristic from the marine research point of view usually overlooked when focusing on seawater intrusion in aquifers.  Figure 5. Steady state transition zone displacement uncertainty for three characteristic contours The uncertainty levels presented in Fig. 5 are given with its mean and plus/minus one standard deviation of the displacement uncertainty. TRANSITION ZONE CONCENTRATION STATISTICS The concentration statistics is evaluated by calculating the concentration variability at the fixed location for different times. Fig. 6a displays the mean concentration field and shows the shape of the transition zone created as a result of averaging 100 heterogeneous aquifer realizations. At the bottom of the aquifer the sea level concentration intruded 200m inland and additional 400m is the span of transition zone. Transition zone has very steep mean concentration gradient from the sea-side and it flattens out at the front of the transition zone.  Figure 6a. Mean concentration field Fig. 6b represents the standard deviation of the concentration field. This information is particularly important to provide the confidence bound on the salt concentration level at different locations within the coastal aquifer. The results show that the salt concentration uncertainty is largest in the middle of the transition zone and increases towards bottom where it reaches the highest point close to the intrusion toe. The highest level observed in this example is above 10000 ppm located 450m inland. The high degree of uncertainty at the bottom of coastal aquifer may have important impact on degree of salt in the groundwater abstracted from pumping wells. This phenomenon is called upconing as the interface deforms locally in the shape of cone with its top around the end of the well screen resulting in the gradual increase of the salt content in the pumped water. Since the saline water cannot be used directly for public and agricultural use the actual prediction of salinity level is crucial. The confidence limit of such prediction is important information for selection of remedial actions to be taken in the area.  Figure 6b. Standard deviation of the concentration field To better grasp the uncertainty distribution within the transition zone, we present on Fig. 7 the horizontal distribution of the concentration coefficient of variation at three depths. The horizontal axis is normalized thickness of the transition zone such that 0 represents the location of 35000ppm contour and 1 is 100ppm contour location at the certain depth. At all depths the largest uncertainty is within 25% of the front of the transition zone. At the depth of 50m, which is close to the bottom of the aquifer, the CV exceeds 2 within the large area (approximately 100m) and shows the large confidence limits around the mean concentration. Moving close to the surface the concentration variability is decreased and at the 10m bellow the surface, the concentration CV is mostly below one and more evenly spread within the transition zone.  Figure 7. Concentration coefficient of variation CV= EMBED Equation.3  at a) Z=-50m, b) Z=-30m and c) Z=-10m CONCLUDING REMARKS In this study we analyzed the impact from the geologic heterogeneity upon the development of the transition zone of saltwater intrusion. The results clearly indicate that heterogeneity plays the important role not only in the transition zone displacement but also results in the salt concentration variability particularly in the lover portion of the coastal aquifer. The size of the seepage face and the concentration level of discharging water are also subject to uncertainty and may have impact on the marine research issues. The formation of transition zone and its shape is affected by aquifer heterogeneity and on average the stochastic solution shows larger intrusion of the background sea level concentration than deterministic solution. The concentration variability as presented with its coefficient of variation clearly indicates that the largest uncertainty in the salt concentration level is at the bottom of a coastal aquifer. This uncertainty can have direct impact on groundwater abstractions in the coastal areas and can cause many pumping wells to quickly become saline and have to be abandoned. The effects from heterogeneity upon saltwater intrusion should be accounted for on the site-specific basis since those effects are dependent on the conceptualization of the domain and physical processes considered. References Bellin, A., and Y. Rubin, HYDRO_GEN: A spatially distributed random Field generator for correlated properties, Stochastic Hydrology and Hydraulics, 10, 253-278, 1996. Berglund, S., Gotovac H., Destouni, G. Andricevic R. and Prieto C., Israel case Study, First results of stochastic simulations, National Observatory of Athens, 2000. Dagan, G. and Zeitoun, D.G., Steady interface in stratified aquifers of random permeability In: J. Bear et al. (eds.), Seawater Intrusion in Coastal Aquifers, 193-211, Kulwer Academic Publishers, 1999. Voss, C.I., SUTRA: Saturated Unsaturated Transport, a finite-element simulation model for saturated-unsaturated, fluid-density-dependent groundwater flow with energy transport or chemically-reactive single-species solute transport, USGS Water Resour. Invest. Rept. 84-4369, 409p., 1984. Keywords: Aquifer heterogeneity, salt concentration variability, transition zone displacement statistics Corresponding author: Roko Andricevic, Associate Research Professor, Desert Research Institute, Division of Hydrological Sciences, 755 E. Flamingo Rd., Las Vegas, Nevada 89119, USA, Email: roko@dri.edu PAGE  PAGE 9 First International Conference on Saltwater Intrusion and Coastal Aquifers Monitoring, Modeling, and Management. Essaouira, Morocco, April 2325, 2001 ~XZ kz-ü H*OJQJ jr6OJQJ jjEHUj= CJPJUV jpEHUj= CJPJUV jEHUjuG= CJPJUV jU5OJPJQJPJCJOJPJQJ 5OJQJ H*OJQJOJQJ CJOJQJ3~XM rsjkxyz$$ $xH$7$8$ $H$7$8$H$7$8$$$~XM rsjkxyzþ~yupkgb]  Y  pq  ~              N[\ T$ȜȌd1$$Ts0s 1$$Ts0s 1$$Ts0s $$ 5IJt Ȱȴ1$$Ts0s 1$$Ts0s $$5IJt (RWcde'(#$%-?@þ~{vqlgb],>FGHCDmnp      C  RS  a              !"  6  MN#-./024;<@DFGqrsyz}   :;NOPQdem^_rstu뷬 j>EHUj)= CJPJUV jU 5OJQJjeEHOJQJUjG= OJPJQJUVjOJQJU ja6OJQJ jOJQJ H*OJQJ H*OJQJOJQJ jr6OJQJ 6OJQJ6(RWcde'(#,$$1$$Ts%0s $$1$$Ts0s &()}~$%-AB )!/$Y$((((6)****K-L-M-V--:.f.00000&5'5(5)5͎͗ͯ͠ͅ j>UjCJPJUjrCJPJUjbCJPJUj@PCJPJU 5CJPJCJPJjCJPJU;PJ 5;PJ5PJ6PJ OJPJQJOJQJ 5OJQJ j U jU jp EHUj_= CJPJUV2#$%-?@j (!)!+$,$-$.$/$W$X$((6)7)** $xH$7$8$ $xH$7$8$ xH$7$8$xH$7$8$@j (!)!+$,$-$.$/$W$X$((6)7)**[*\*K-M--:.;.d.e.0000&5Ŀ~ytoje`[01 XZ45<=>?@BC+!*[*\*K-M--:.;.d.e.0000&5'5)5b5c58888*9+9>9 $xH$7$8$ xH$7$8$ $xH$7$8$&5'5)5b5c58888*9+9>9?9p>q>|>}>>?&?'?w???@AA$BBCCCCSCCCCCCCCCCCCĿ}}   JKj,-@A BDE,)5458888889999)9+9>9p>q>|>>??AA$B8BBBBBBBBCCCCCCyCCCCC0JCJ0JCJOJQJ CJOJQJ 0JCJmH0JCJj0JCJU0J j0JU5OJPJQJ6 OJPJQJCJOJPJQJ j<EHUj= CJPJUV jU j׼U joU jUPJ5PJ*>9?9p>q>|>}>>?&?'?w???@AA$BBB&`#$xH$7$8$H$7$8$ 0H$7$8$ 0xH$7$8$$$H$7$8$$H$7$8$ xH$7$8$xH$7$8$BBBCCCSCCCCCCCCCCCCH$7$8$&`#$h. 0 0&P/R / =!"#$%pDdTJ  C A? "28P N/7D`!8P N/7  ȽXJtxcdd``a!0 ĜL  312Ec21BUs30)0)0Qcgb  P#7T obIFHeA*CT f0 PeDdpJ  C A? "2\_K` 8`!0_K` Hxcdd``~ @bD"L1JE `x06 Yjl R A@1 v*kj䆪aM,,He`07S?C&0l`abM-VK-WMr.PHq%0ʲ`&20H&24Y}f W&00\o'[8ߊwa8!+#RpeqIj.ld72X@DdpJ  C A? "2]_T;)C+19`!1_T;)C+1Hxcdd``~ @bD"L1JE `x06 Yjl R A@1 v*kj䆪aM,,He`07S?C&0l`abM-VK-WMc`8 r.PHq%0j*`U&20H&04}f W&00\ׯ'[8ߊwa8!+#RpeqIj.ld72ҊArDdhTJ  C A? "2;#|P`!#|Pd@ |XJxڍPKA}UoHL$Xؑp`"$, sgpk +p{U3u~Մ"` +kwr%RHtRv2窭Z 0"gY K)l;iFH(AǫhNm +w::9hpӄNA穻vWx $UI(6B2Dd@J  C A? "2~k~R}p`!h~k~R}~  6xڍRJ@=&}$-D .ܵ& t*R\ݸ's\t'^'ւ̜s{C6䫘\HOГ$f&oA!"OnbִLa9MFW."MO$/&Yx܇a:%I\;cjՅ-VUp8|Qw)7J@?P$a$I:qYѡsI|x^_oPV'kiog|Yb(I39T[DdhJ  C A? "2w)]~6R"(IAS `!K)]~6R"(IAN@|xcdd``Vgd``beV dX,XĐ Ɂi A?dm@P5< %! `fjvF+B2sSRs\ F\ w`?7ڠX~ C,#HWhneBܤ& !.I-KIt )XO$Kt H14. `p 321)WBBv3XN"U Dd:# p  c LA(C:\TEC80\domain.wmf2uכ" `!uכ"(?"(_W?qxl؉1vbwߝ|6 ]TAP(U%F$,vHITiL _H"E2USTI RTm @",SQ#0>~^Fܛ>?bO"NBGp/;vR U٬jHѿQEfinj*!Kl;HFl6plq\mUԕ^uV5i>'.vzѶ UЌ|Q4͵fnDkjnv,LFMd|W+kmuztGuQw>p\>ttPcr5J rk3.8*\TJ^~,q~*^Tڂ+ƾmu{?TcpE-Z .ssv+ w1wDžcnws[<1azOZ;sֽcjڹϼcޯ .zLw}Lp[Okv7ZƴvF1j o5[vnz 1Bi܏[|/ X@Z;w*P>fTϯbkO_[{E{_7^c!jߩX{v[4夻ZiìpuPRnCI.]:C+e)Wрpӝ6G.B,4]^b(Z.l ʦY7h8sX *_ޡtW/.>bC&eͤle[N;(ve…g*:mr8úr@NlR69ACBDFEGIHJMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~Root Entry( F`7 E7@@Data 4!WordDocument'0fObjectPool*+7 E7_1033193333F+7+7Ole CompObjfObjInfo "&'()*+,-/0123456789:;<=>?@ABCDEFH FMicrosoft Equation 3.0 DS Equation Equation.39q`mI\yI  FMicrosoft Equation 3.0 DS Equation Equation.39qEquation Native $_1033110677 F@47@47Ole CompObj fObjInfo Equation Native  <_1033110738 F@47@47Ole   lmIhyI x=8mC FMicrosoft Equation 3.0 DS Equation Equation.39q HII z=4mCompObj fObjInfo Equation Native <_1033193352"F@47@47Ole CompObjfObjInfoEquation Native 8 FMicrosoft Equation 3.0 DS Equation Equation.39qII N R FMicrosoft Equation 3.0 DS Equation Equation.39q_1033111337F@47@47Ole CompObjfObjInfoEquation Native `_1033111391F@47@47Ole CompObj fDlmIhyI 1.75"10 "4 m/s FMicrosoft Equation 3.0 DS Equation Equation.39q0dInI  Y2 =0.5ObjInfo!Equation Native L_1038218438$F@47`<7Ole  Xh䰤RY39)ǤeONi6)͠4{rrOdkL)YSeJW4erd]iRv3&)ˡBe9C*:kr8ReJW59D!hHW:MJ'(9T<|cIW\-itE'L'$?Q aa/]Ii=ʊWD]Y4),}PYìL@.;Iq)7Bo rޤ|`tqø?u 'B'L~^7Og2my"XROzN^796 #;4f84'K_KbMJ/D/k>wEϴ'#+A<3xvC&d? eyiehZF+#/yމ#@|%&GJ$ز#@LgPb  #Byz/Pb>c@D J$i4qC sa@_.a%V4_bΗU?:eq)&{[)&OQbw>(J$XF! ֙k'PbD,0> DJDE((1 k.ȋ.OQ֢HVX=VirnjE 里u+Pb| fQz>I9Z4F+Q1Pn{Fr(Jx߫gX*|%:_ך %@,s]EA UL$-\d8U JxljbW1(*&.f* bquD2! \xO0)H;X/(G'=޻>6eGFG}/ZLc?[e<׻ #Or~;77{lCh{(;Wh ަzjk`ـ{U{٪-]՘kV-;#DWt= Va$,$P>s~υ@j_tLq?KQԞ^|WU %L#?+וҢyԾh򮳻B94-~{LjQU+Hu]uAHGߕ?+~q^y{=ϻW<3Lj^&7:>8ĭ(ǽ/Ph )qWA,]UbSaq *Wr.Kg/+p8#gGwЊ?sޡB~LKs{0%8U,Ås4 /}TCGJ ŅiևB WXGs)RyXn.GUMFT'bjk4P$}B=͵a /ZhF|")˨jI|ړ>Q~ªcigٌ17u.Gb B;i!hg:'ٹvVG"%{hߣ#9),,,,,6;|||e#|e#|f###{#{#qcqoWVG= a >YST_^h%5E%fwpZ^Wq;^EͽPgUՓyחWע˟*&\EQV̿6__~!/9D!˗sBb+6+γ*? W,"EwB}\E.חU n7ejT q\7ejĭ՟9H5f0+@3 ey\1F0m4k-aQ4k] H2eYF`N{Y̊PiV1SCUxc)*0 f.GS>V130 bHg bWA<ᔏUA,# UA̬|֫ Ez^ | bF$ Y| b0֫ hYx UAlUS>V1$ HWAQ` 9VR>V1SAV1ן*^GzsCza8sMk+Ck#ֶ2d~yvmᣝ=k? &Cee:i c`m iwx1❍s/!+OqQ*!_r0J/Q%3Ӓi]nh4bՎ~Dquse( Xzb11-V)-viǴdcZ21-G. /;6_ǣkA7 XǁܫE0ʋ\s1--UJGhcZ21-|LKf>%>Pٕ6l_G>}2-]im>TG"^v,6q,8v/QΗ(v,V3\7WcT9 Lu dtDaPdD :|at3EBUNh:>G~Q> }Q`|t0BF m61Aި}Gf7jFmD Z|t0=rBLu\R|o$ 3S{*0%g>:wT8+W9-[ Oʍm\3dݛy݉6݉ΞwW2.s{Qb4Ql\D?"\ŽDqILb4WU(g!D<ƾc&AܨOOqC$W1(ܘ"\3|dth woȕ9:{=d;ƍD7݉4WQKEx E\CϹ9x'Q#3\E/Q,4L194zxVqIܻb Wї(>0UXv'\E-Q*z͹=K9ѥF۠"X:43onAԧMW]/IG_A.xڕ֫#)g`}sA}𔠋> CkZ鳸ZZ@OUUiczR}psnkݔM=SрjW$#& ]c1Qe1boTT* E* U* * -* * ]* np,,Hdh,             P$@|Dt"ɝsO[gP.>|_Kc;jXv$W3ﴱM -V{ƾ@#p@E6<nj߭ʽI!2LutioPe[Ubj/~j֡U<[Bկ7ݪ+0ڿRW'+,KRTjfXo5n"pj& jieG&JkeD,_{%#xڈvUwhy6ЊoȾ3C}K}Z~S;-٧ɾ52}SBhG~;vJ/~gQv/<>ֽ1ɻK%Y*/+>uvet$s"*Ut#k4]A|E 8DSߨxI ,Qs5akk:0Y)f1(u X=J{تfGL$cvSfw,TcR˺GiU{ԗֈXlvSu , uhcSu8$Uz8z=JƙV=t4`U3,18|{3,6;`1g>Xup~#`18b |{3, s;Pǥ#Вǥwn].os5O1(wj5bQ* DkljBi5W3U' gE۸YDEm־k?\Yp3[Yt[RGʛUbQ&\Eph)A:|v?f$ə^Y,#̲S <37y=8)a{2{XKJ+7A̸1YMJsoxa<E:{HGRR|]XpRZK[`09fC3BIi7PJ-A){LJr a9f-zRB`F'n a[| CXKJ;UTJY,&cv0;v[|,@J*;{{ Iɸ;Ϗ}g^l=V=zgۚ)QrVJtsLrD9昔$RIWHrI(ڒRP( 9/[<˜}^g?YkZY֨>-EzKQA07n^xpnAa~0~l/xnK=r:4[d/hnI[d/hn[P^W0vEB斓 [jU$d/hnݓ_^м [˫H^-4<[^МQ\_C}H^ܒ^pNEB{AsF3+U !O_-gU$d/hn^2;"Q9B} U 錊-u [YHo^МxE{A>4аߣ:qw',yf~0%7?3eJGuvw<(Oy7CJS(J{ ¢8.%ɠ ߣ=1ਲ਼nĿGZ5jDc=Z#="/_:FGhGl( ɠ0ŷ2T3( S͠,L50 B gRR8fIάcR=~3"G9؝:2#?hG ɐ3p) LAYjeafP d.ȥpLVsGgLdYёKa8&+zWs%p))6G~gzp #GY+!O*Ka8?'Rݿ0+ SݿP_ߪ ]'kGZTF-) F;@UAy..D[OF ^-7խ˕/Oϯβ7#R}Y9e幸O&Rzq,ߜ{qn2eKߒ;ŹsoG{q9\\$Է=wzs_ p]J͝usoGlssqLS}]9==&zD47<=D[;n=fG##%'79^'DL&N83{C;άwJ֮I=r%zIJq8rzD繇@䈮z=#WtpGG9ǢSzD'mHA3wqK^zĂǴ=rD{=bzK鐂RC S>V{kqYݝꋂaY%gkbpqM;c?}{C0,\?YͿ*4 NsDӘ 7wbmlӀ r~NeÃ3pS p`B6|s~)`O8N-6\Wp{N.I/6N6bL6l8h[ uln;>n4׍bÃ\ lNᱮÆqm6;Ć{p7W6 _`J6|ceޏl6S^67o^f˼jb[l;o4>}>b v6B5nb-ԗl lĆlD}†oPj=.TG ձ-?gOk> ?fO7u6\VWkl 6*gߪQ6 ņ_lx͆Uoqmkbܿ&:U jWU^blx: Vilx:;d OP;(%>eCՇlZ.Bņ/VpW Wll76|z QpΆj սl$5 f{;v o l]o ^]z^/6<†gyi޹lxג ^. `/ 2p?/Ɔ{{.vo-l z;p f{n WUlkU6} ww9lx$~ٝɆS3}lQw~Æ'ac[P6|{`~l{vclfw:0@Ͽ{Gqelې up[ +7 pcls 礳]{Wlx '/jg#^|9k lig),`Sl6<ƙp&aN͆vnc×:7ΟpGJ6ƑntcpӒ g9 k+46|#/vOIl;{?_V{' ?`kUlx- ~ /qlx} awUh`kv 6l >`|F-y|͖<~K_x%?ՙ /ے~Β~ܒ%^<6WK^_K^pu|=ؒ+M>na'B pq}o>l[l{+ mlxņ߱WZlxu<φ~`Ï[|Y6<$#6|@ɪ![}φl3 dU^`+OkxȆ竏j=~LcSZ6|Z͆Ǫ7dUON%7dUO{Z"z"Y*dUO'iwTVF='kuMSvz VL5 {JV=?Aoѻ Ƴ-X67 d~ӻ ꕲMlxw]φ{װ=YU˻ wdx _ufy.^;6|'-lׄ 5` .B6|'kpÆl{g_Mj*{5{k+_Olx ?bÏ]| ᮗVa{֪}j_VKdU wp<6ĝÆܧpm16Ng[5 ?ZZ{^kW()RȔ[J#ӈ̹[dJh!J2jԝ(HDLWU|x^V:쵟guV(Kg?fFˊlÍpi/+MsrIi9 to{]oi|9+gSIO0g8Vr-0LWW_1gqwWƝ]]iՐGLJm@4mƉ{C%i[.0gxc0_ fKW`4~ O)O(5x\Qmz*lӻ{a6;٦wmz)n^kqߤ]\~λnni\QKk_xMv^{eyF?u{^^IT]'򞖿E׉'uWDcu{x&]'u<0?Q׉ou"y~O߻k]v=;[v_+JU6(y:nJ+K+׻ QÜ ፹xm2irRi#p4>.Ǥǻ^VJ|gˏx^-Ư`+=Nw'=EIn4& 7Qk̽*i]%{+qW7Jwt%Ҹ":] i;W\J'kAgs[Dsۉq4~$h% JAsOApV{ pYaǓŽ'I =l :nN7-n:nowΗݳqLL>ou{Xxtg9xbli|[gݦL1YxiW?:^)gLALbҸvYIpC+Yoܰ]7- nUxzTuܭ|4]") ],))ᄒx\4U_+ +KJqRciܽt4\n_ҳZM4n^:TPn^8..ZJ㊒ދ?MZK-Ii!9RI/$:ei(iG =ˇg%:i񤤽-xW%т=ZnN:тDP|i#9It'G%aAx_ӸdD|\4?,xi4~4^^44.9Ӹiexiii4^a?a?hww3M?7WƗCc=ˏg4>4>4>4>46>osJ&[giҸiii\0M'ziiiiii|iqbymiO %M㿙wMLkM+Lƿ60O5O467 L,7L=L9mi4^g3~4~4~443iGz9iHL Lsrɀ{LN9$ǚGMsIL|NpmxgEz$7#=R‡*s-rj9xilaxaǀnH!-HAզHY%qeǼxi'cd416n18nc772#຦n!g1;IYiӦc΁ΑPPxV*xi<)9 uDŽ:C4 uN:Bai"9,nuӰ4C3㚡ΩvsnOor:Gkݾe4^K^xSwz(2i<åfW]":]'#\Aq9i;O⮩W$>_J!vi<"}M?ץRgT׶Ta<7}/L?[xE0^KK7J?t4-{K=l43{]7HンҸe!|t4$d/HҸo,< {VWf˥ii<2{J![*gOH=w=={L_o;Gai|_4~$[,fK"i*[ٽxS6_4|4>c𻝕=coP`!g>c𻝕=cŚ;@#(`W5xZ tTչ>yy@H$3g#D`/.@버|B"%WxA$X,ԶD P(PYD̍ <@?Ήə ޵uٳL1L‡ b2'<L"[kn0}%>c"@͎2 s-q7\Px*njcO@ȼBLG3I`nK=?B|~@brgfk~"F ޵$3?Ia x(+{՟F$[Ȼz"!dT.]ޣL;[NA"^vYc%C|*Ѳxf%& dpo /fAxr+°WUcGp 9Ci䀏)_gg#9`kBEz>1g(|*-29ࣾ)}#,!YjF6)G9"\"]B%)Gri:rRrGGRrr䀯Jp$g#/C9G4~?9i Ep7G/Jw>˻z͒Gy Ûp2ey>@-6䀟T |gr@X#{r^양~͙#Ipyw s7 |B܄q rsE~YH{};!`$8"\&#, ?C"3S9]7?I_Fxry B.~Ιt"\͙+WӸ~3W9se<|Rr2{LǙ3z͌^ș3Ӛٲ)nnd g~'Y(d\+Lm{z^ءZ"˓͑l&/xIWf.<Δ73Y1X$.[E: "w#2̡8&ny=%GGoya֫Ӣ8Ŗo\r)I P1_p{G[huִ55QyCrCʆ(5ߤ=^U{ru2nԛqPz׶O`g+j#T=šjW8:qFFmfL[%1Xw N˓O'ڛb.ĝ 6ǒ#'ȑۗ#ѭ&7tQh-¯#¯`Uv{;0Si¬ Tfգ;,K1"KfnGHf*g;LEN;X=*4" ˈg2"tcێηE )É2*6%(T9YZ {XG+lVhmFhGl&6L6QzPjUΩ)95l)[EGeej7(!!.ɦ$%*uUSR:%۔r+@"65Jc8m G RA L)21[m6#ޣ5y9=/G6e+QR̦*6%(rl=JEHImFhGu! DsrRNrؔP%ͦ%2Avc"HfPи L1v˕vg_Ҭo<<Ė#ŸVsĪ9bU{sh]c4,ܱxbuYeZ\{.).#ZhUF%_+],%/֝Jf3׈ч8\ε_ ]fJlo jF[C# !w;Ύ-H<ΗGȏ"h =(/|eȵ<[&G'&mΒɐ>POBx*IpQH9)t|x9\%wIs4\/EЪ\*} Y~o"|?f}x>URf#h{,/RjgW03\@[߹|mA`rK6Y[*6Jڻ'2<״=WGq6D]@nzW&[8خd{6)KnUܭ2ԱPXmukG^REqTDy>Fs~I6ޭf*q}f*ֻ5`cjݭGֻ5`fvT`ruf* ޭ)bQ!ޭ]vڊЄ1!mGh}T_Ex]cUFeU2lJQ2tc*'{"ƻն5]d[ɤ jkSrK&ժ4mvlnm- Uggx6ai G*UWlbVe!QxVdPlQwk]m6t;*XL*$2(b[˱E lNwkdk r9U!J U۔D.UH1ޭlwk{C{Cv/͎_)5ڔBRMB.1ޭӄ%Ѡk-`]4N8V(mnJ Q~[ߐ5Z~PC,(4ۉg1pCk4:;{8cF_pOQ $*q| yK|-u_ftƻdN23&|Y}˯Rz5V Al WÄO$zuR _VMy[7<~WFˌQSJ:l\b*o)`;h+s9WLY/~KKfEQE?t'5P;rPp{$u>%Tu73vϡ%f~^uA'DϟVM;>=O aJ-;|,3Ӥ < :kY6'ouTy"CsX< 36 ,R"wzg2 5w&B'4Zܦj}u\ogdloaվϵZWXp-sE;$)A,x-h7J^"e+Ru@^"d2~re/@>_oGxe+Uo;D3&~gDwճg?~v896ћU9:r")c1vorĐ\\3r= zg==UȯϺ@{rD"k}n̕/BeV쾂`O <}~idW_4ԹX;;D8G,p$pkR; 0av=Jn} OF;aAuPk=Za-F}iLt.̝3tܳaɡh5KH~jf>]0x9- Ǖ` pg&^u˲)rx)Aqn<"\q=S-ZwC&o(+Ŋ5V;ՃfW9NuLu%8d,c|瑇r'0Up3 ąuFg:Ό6V>ь0VfRoGgKmW :XNJάgPqx118>ttMcq耾49:/Qf }i/З(v\hyFb`ifDdk# r  c NA*C:\TEC80\MAROCOL.wmf2ޝO ƶ8|b`!tޝO ƶ8 8>#(W!Bx tU+Wu~$ꮮ6D f'`F F1ƄA8qU]23 +N2"f@gpqE( S߽!ݯ:M`܂bA(/KZG~k9i˦|!GH@tBSќ<ߘ}QAoW,ὍD O$+MB>s +s8b1}Vj*\O*{ȼ\P?/⳹k^܌O;Sl4s\rlF\'ɿjn;484ج&]"5P=0^SžLTґ{NZ z"K A'3`b:/'F?F'*9-1D(]E5Ln6=ېI]@ȓأv7!b;Rp8|8Gw# R6g"K <;4]y64z%/LNw%U9*TO#z à[g='Tg r|veW'1[j:~贙O&q=ڼyJ3]s@o1?yzc4%ҭuR21W+6dJ\"k9.כ_XRZ;\WXw󬯠s)m:ֆko=l+Yb_ۗ"?ooTߵ/B9橷; ?혭嘁luNWou6 u֪o8' ʠS=2K > P2wCAkqG)Lvh=yw33z%3713MfAefl3z+|C$љaв2%àgY)~alAobt2FA=AI 2'ݔA mAR>ʠ1 OZD`ƛ dƗeyaʠSe+w{cB~Lc &j˱C^ ocepvWtژG0w 1eM|c,gC{?-e_n|muu(=}uq:TPU9 UNS]uNnwe_W+7P·C^ۉ;}@W?յ鑖"[3, e_]]PP݈o7N7w% }uRA*}/DD P,3,ʾ5_(|ߕ c<7OhvO|$[7zӵ_X!Bvky-]s>^>CÄB}ڥ[k5ޙv(ے[yp_ns@μfͦ(O:ukəFz]Mh.7?r.{-ʭ^+Ouk|#ə|Fwܱ@yrG_b~Jrf,`{a@Q<9? [(=Q(so()Oʥк %ܣəJr(s*:mi3G?`YZ$SIeϽ,1.މ?;jԻ.lGc<?]GcF~4J,Tz [J1}^,SBˢFEz/""=m3vB()(?F^p;2ގU;⋃+(g:vpM!sW.p4qqQıI2:E4XW[ރp-\GХT\KOsۥL3.eRf08ZFZFZp[ 6_ 8n3X|=1\hQ18E5hr; >3^Ω>;NUy=W{Xk [{j;r+QO POf݁8u@ |Pc٣.`QvE lPˬ5pVL)jH˘LO2߫g@ a5ǤM͛{Y֞kWv\Z}!:^J"^ۢhE¢۞-<7GItݗ>0־,M~"~ӽ{ٖ3*5krWZYzi"l^`?rWQZi"l? ?krW(Y{{4JENŽ{Y۫Rza[hm{he>e>yPrrst\[uut'\7ZAM寮EMlg:#Aㆦn,"W\f2rkzg3͑P[P ނnj=-Bn9[@1ٵ} \[Q>f9:ZZx㜫c帵Te=Bڂyho:ե\]jf,f j'3ٸjJW,bfXz ,ĞG ^tuxKW7PU#3qWj:]m^5n$j`/jOW[P7.^S>]>˨5;=Q iƒ F5 >=NP?G Ї"aNG2 0@f]:b&+4LV^PhyA9#*0< sRiLRiIR۫4ôW 8xJ3jYHHViY#0p[gShƉV8,ЙZ4ZhV.= K#0iF3V-]4y2amtD|d:KQ>' 5G &jv!:B |o`sC0?#ۡèU:tYfh࿅5˜%rh}Y5;EٱgG%az %dԢ}+(SWχi_u8D9Y4Ґ ++Op<+Op<? {y8#X,|Mg#,ʳw˄koC3NC@*')Tg)v%Ɔ{)7T4٧bkҟ:EgF9q |SjΆr ԛHd:4`[h`Z؇/ &ikI E;ȠZ\HmHvA; ު]J"h0rKpv{7 xjmN, VjeAzG\vއο`&:RoH8$'zOt|i:Ku{|[Œ`HtxN\ FMicrosoft Equation 3.0 DS Equation Equation.39q`mI\yI / Oh+'0 ,8L dp    CompObj#%!fObjInfo&#Equation Native $41Table މ@8# 349L[=pK=-:;ɓȻ` #dz;^T)PuP-_T~Q'YRgjM[>G<>mF~ZL(5pr7֡ZtBq?TKiB'7V&>#KC)]!@zXȁ8 ChZzUO{?m;JaaqGO e0|\aÞ/=e]s8lr fe~q:<.LR OrI/i.j9i,QԤjӾѓ숑G3R d'F;&~-_Ew(j"qE1Si@ 3TIa;xjyS1M 5LS59!lUE'{yE}k:ͧHhFϘC5f N!*>5[am˯B'\ q;pEcn-eaD 9A'\8E:r?qte8q|ith'=ukGab|'c3kM;XҀ'*9cHz',9ݡk쫘eHst=~s ܠWa[Z`hv~'ztT[ȼYyӞDLfsfNX66gsۢװFs'EFa-v/.#^*ys :/3GL{f0?0S%{5d&&<* 7s >l%XG_I&'p%+NgOHk~\ė9KĹ~ђ Wt~,ɞw^7q|(:HF{<G[=4:oL^w\svI`,[b|~1$}3u}`g9Dg>X cO־]-;ސVe9G}ޯcHO{UE{9C27*Gw✥>[LTѣO #Ա\7i(zOk_{3bL<q\q1*ͤGy&!y7Mae3.~ǖhx 8?YhhMV*Av$qtKf! Gߓ6dw&n 4p\K8co%ܠi.m5RyAg QVC'$ ?DrLO^qR_Y V<[fߛ3֙k8o@d26kQfsU0m8ޏEg~G88.r=1Z|}*8xF1I)ǻA[6<q枓k~{ʽ3 ޹̫2~gB;L1HiVa=~̎w7^MfEݖ]vbW8[x;x0Ա[9g[.`}|lNUcfV9 qvhΑZ.Z6qi4צq%.h3w4:xH}N/yJsA@ޚgI^Kчv~G">`>oKYz~~D&4Ljzhy\o!L |B:=WXN"L9uᨾQF'~,q&sQN/p=<|⪲|mħ -U%M"j9_06xUDyZub_A;|}PT/2Um-p ʓ(j+]J!TGMv?T!BdS{/e.zD]5,,*pU,21Hm@(Te:/v[ї Q,Q.P٦%QsDb ΁\lܠPp7\%VT58C+jUH 6'CtSC }U  W b 1CK^&ʙBb%+}PHRO1U\Sq: -+Un& +pQp= vp5/L}r8^%|>AؑxW!]ڭet=ڄI e{= Ddk# v  c RA.C:\TEC80\marcavet4.wmf2s My_y~v4O E`!G My_y~v4&@(#)Wz x puǷI>MvSy$$Mm--><tt<EO(X9<xw#z WfpxefrpG:r3vpUErpC5r`99xoW1rFrL1v*G̝X׌xe;q/[ ޏ?3Tp1r³&O:s<[)6GxRS 9x3|Va"r.zraaJ_ nw]G}"[)(:S"[9Qr4jrRU9[9ni9;i98;Hwg[Y9}_77!󷓃;ϐ?!׽r9xO"!?' >(rԑg&Wf;-N &7 O ;*>)djO!J'(i 9x9x8;xxf@d3 n#f|XXK~_`gx0|LlMN t&O ŷl1 |Ƴ\o"{o  {v>^S7xא{N n~;a%oWƮLӶbuBO 2O,x=1@RvhSWT5G\vqmEU''6&I,G8pn~w汪 BnUll!PL fڙ\ڬY$"Yl>O(XyyW~ů%?V[TrȾP~Ni vBZ>vxYϏ+Ag<:V}$zڍ%ZLҞ+ޣLW믫xL^cʯAߧs~DmEj~3/G_|+sN V<6ջv-.ַٶhkۢSSKr;ߐ,+6fm8y2.oƕ?k^Yk;yY[mznW|Y=|oJv |j>AW;;wHެEʝ ܖazI`?kM-6}AOZtey^YҜKs#\G_V}Vm^Sd&H8'ZU}yOraM()z{j[zJc 6[t<*C53ܡF^faltol Ef cƱt66F eaxE2 ~Y  ˖ /ž3YnDg#["˳7Š赞*ZmɰZ{V55FlDDd#"g#CɰPrdmdؘl,pEX2bd&D"F$MF&žLd%݈lOŖ E3ΒC]vts#Þo^KdٛDVU4ɒaR3h9,ui.-2vK݈g#3,Fd6 A,pE 7lD6M\KdhfD]d8p,Z9YE;,vDÞQ[Hi-Yߤ8._.I>Kcd׈xF]#F˽F0G&#L mJ-PcܚOg;+[jdΈ9W"Ʊ?ڟ{g-HZL4Z8'sܬSzǵAn{ѢT޻n'{\'{Nh({w27=oM>hQnb%{o`({[]>^1w Azef"ADdS#   c TA0C:\TEC80\marsigmat4.wmf#" 2y3b`cBoW{\)\`!y3b`cBoW{\)\C@#)Wzx tչ y93瀀yEQ썖B"e  o., xo.(( X@Xwf;3QowFM8cм30`I~}/ 7C;i׃3~E&H'dv<W(\yncչ|UUUkfROmޢC /3[j38V#@y{^ֲҽֲ h6nSyu\tqU`,!&7,ç CPd'Ax#t$SXG~D8B.&/&B79iSrGb o^'.RqI+9&/b+'rrp7ĩYs_/TrLc9XL>`A0@3>ct#'/ "o # !f9<|G>\B m&C>)& ?IC+ķ;OgoWD~%`K2=n)r/998S晁#r19x9xאԂp:8x:Z]Dޫ.%Wϑ_$<׿<$p 93r!iW%w:5 $;\.$&O )tdEq-9x9xgxxf.xg:xt4Qs^jX). ψ–TWZv%^#=<?xMOZؼgZ뤾6ﹾJ&˥969e9svD~#=@^k]k/7Ndo?yg(\;rE5\䐃+w?QxW(:.'?ZWiKnFk'9x'B.7<WyI{9xB \(^ /''#r?ۃtA?!ϳ=QZ S )z#_ʳ'i heSwC[EWǨ2G2\r9PBޮ4 O~WU^yrD)rjW]MP TyJ. +|7ϸߞL3 Ikv ,^%i"k9+9kF"Q1λ|dλmw]>rt[3t~%U8rp>C{Zg(=J;X#' *_$_& O{0ҳGyQz(}gҕQa{=J[G1={SL* =rv20.TSy%r _I/e ۣQ==|/hIw`C+5ğK˥=Js=xTF+xTꉗFg{ui_e?]_kf=Y<-Ɗd~ 1ޟƎ<p2=cz,WY<6B)-+? l)#.|Q JxW=NT?#$<C˞|U={V3|7'{ wp` dy90sXM$s==7===Gȝf&2tW颧lOܳ'hY=9ˌԾz*x<-ȉ:oH_ݚ8y\ܖm d|~|::kd%WzQdF|JiOs7S3Kp&w:;c֖&TeRkmS2n[:y*sη'rnnuedd*{8SթjKɸ]3R?<#&S#>lf9֝n0xjk]pH>T}{J>*|8;/Vj-?hĔ}Jox4N?.Bj>eb[,mq?Uni+|O;wX>}]CcRj# LW°H2'֌)Ȣ4#VdI#賷qois|5|_sNsz D;>/~\<]}5,ժNZ[jI0CqOej:ngM޵'NgF4;s,n\K|sg٣I~DO%zb18ln'y{`q]vc>M—<^Yu|a&Lm2hwrɰ\i/r ++GrYpSWFíD -X3ZJ<Wu"5G.ID.HvzN~;=h?{4jZD ZQ{u[R ܐ%EȼH^R$Eɝ7c_#3x[t:hIR Kf%Ebj"zRDg&r$#e&5š:[=I-`0"^ 'E,TļXHUG'EֳX2¤XGaR-ԞQnR rkR j׻#)EvD'Eh2z O(3Lv 5W/싄}5 ZY"Kk""YqZD: :[=ccvH8VĵI,&22)2EFD"ID\[8p:Q8n\F$J8$$E Xζ#?m 4|:u],Yz;ӝ}7nZwnm]GN9-|GsNќӅtmwI0WV|+m05,@CbM  W`6aXY+0ebGp\t\O~r*R_Ɇ9} m!d+lDvk} m`7e!dP 77H雊EZ餣E7R"c}Bh#p}~>X﹅;q\9}#z.f6fc33jc=3#f{<3G"fyǙӘ/0S Zff 3*/CлWГ=zfY"fˬLfV!d~:3Vf##Ю:k癡ϳ2C_j 'TfvA{23{$3?쏘ۯ0Cc m;2Cәq~L }<3uΕw:?4 Yz^g}[_9{Mcf-3Yn- } 3n+wo2C] ~} :_ЉKgƗ -~ޯk_z*WiB„?DTJ; Ps >nϽ*;ĝCԹ;٠mtϽ'lp@t3\~⻠RenWlW=wT:v~f11Wﵹ\m'Pll/Izݤ/ wiTv}~B)L2 HJ wR#f̑'_%-u\Cuc)9H7]I28[@RG79ޑ:p_K8Yf5 ԁbU[eG RG'9.uq59 u>*u4c#stNǜ_v7W+ ƿLXS;ԙ>ʖwypo L5O.w*0!ERbgW+*vz^f0%O.k TN>S'?ک tjS{0U>a0O.wg`Bg*OU聎N}%YْSБ [&@oB yb=iN{CG$1*v:s3gY}yc>c *F1;.Tq4iRRKRJ*-sN*=O{I΋u^##)/u7JguϷY:oY=bn^:*ǻAyꫯ>BoyPu;Ê5gr390=w+*j^[jVQkSڔȃj>*Ͻ:٬JSRY,ϝkhVQo$7#s r5Y߬ꇕzّ͐߮sbNpwlɳO'^hDd3 3 t   c PA ,C:\TEC80\marzone3.wmf2dpkt{F|`!tdpkt{FJ (AABxl+zl qf#uB] \KS:!dҀ#[FY\fc18 Rsv!sa}{<>^}a]!TI8UHwf|D:}wL5<~'mMqεXm+D;Mk{Hb7fҪ. 5 5bwy3eN'ͩY _!|v\}"brsҹ 1>>]vdǜI[?^a}ׂB'"WD:kWԯHGr%GbR7r4]->*k136Dd1J6_}<3jIu530CN1CY -4zAg蛴wi3CU{z@; 3A~fjbzKMCлa~Q_ CfЭFzq#3 g?o3C8 }8 G׌瘡30CO1C }9 kn`av3C_00C50CekОU }e2Cm9k36:f[3ՌпƘߴ }: 瘡vЇ> > }zz]`>j {13%{!3Mж:~EN3*g 3zg 37ǘlfg> = tw3C_2Ct;__u"fܯ0C {__so3/2u!yzamfkStzO \ .*X/EܹU\R]zpE='6@Ag :L~o&(z{-~Y e\@AQ뢶z]VO9Ro?z$jc;ҫf!_6ϥպn-$$PCT\e<9K=:֒S9zɱOD?IHj9Jr#ulڹtVu<-uJ UB4Je2,W_y>O-Є=Tw_yBJeofj LSO`==>>g>g%yd/[8pZX"hs_KQEJ*NJӽJ7>᧋}^bzWȘtw5+OR-`ys-Tot|?:{Ay;>VrK@;~>/ | H/9^:Ugfz\PgTTGtdG&K#X}TiojSQ3ۛsTtAٝ9{,]-Xy`!qh(mXѨ >J (AA?xlǿ+qis E#R!FcE'da!#2lDqY)!nsY0]z3af{}7kf~x=7П2C5f> bf =`dj_6>h }33ifFk/3g`g}5 ]0CV1Cd u31k3)k3kOe.MW؁&;s2f\f'л"3f1C3t }:3w91CIO8`~9 ==_"fhӽ: }c^'3C?1C3~3_Ct2WtfszA^Ñb > =Es)(i 檵r?wyP P`&7LPyA?m?,P$wNZswAsNpϽ'lu@A.?]P˝.(~i ҵsO)&`ݳ?ɔm'PlzGTc"wUoiIpʼ"gkSkg 2ɨ|" YA\+2GOI+Ա̱kUxK@RÐ9&Gԁ29K8ReY+uJE*RG96JKԁkq'9]G6rdc9:ju %jgF3:3:G ΑB*^"+S˝LQ\y5yDUF:mȄ ZޗOؗ/QU;HDXgJ3:SrsTr/LX+QU;zSGʆ;%xE&,S-"e7[%Rv#nt}9τ;gJTroL؜;jO*[ _P[O3})s'OF qM kĦ:v1Uʪ=J5yYxW _^yҼ^E%@5y ɫwdBER%GM?~f7B5yKw;ȷ[vjHwXq)9#u uKx}j}`ž\mu`Q"EaP0"މT8`Kx@/ȉp[y\_5-q֙UMR`vo4^˥|m&^ڔOS$M=Q~q`hR=2Dϳi+ͺtOy3SummaryInformation()% DocumentSummaryInformation8.$CompObjGjrEstimatimg Aquifer Salinity from Airborne Electromagnetic Surveys: Example from Everglades National Park, FloridavstiDVFVF Normal.dotA Mijo Vranjeuif2joMicrosoft Word 8.0S@F#@.d@;7@;73 ՜.+,D՜.+,\ hp  >USgS0l>1 rEstimatimg Aquifer Salinity from Airborne Electromagnetic Surveys: Example from Everglades National Park, Florida Title(RZ _PID_GUID _PID_HLINKSAN{F74A6C40-6032-11D7-8B41-00D0B7BD7D00}A<)>C:\TEC80\domain.wmfi. C:\TEC80\flux1.wmfA(C:\TEC80\DET-STO.WMF*C:\TEC80\MAROCOL.wmfkgK-C:\TEC80\UNCERTAIN.WMF}#0C:\TEC80\marcavet4.wmfi1'5C:\TEC80\marsigmat4.wmfK8C:\TEC80\marzone2.wmfK8 C:\TEC80\marzone3.wmfK8 C:\TEC80\marzone4.wmf  FMicrosoft Word Document MSWo [<@< NormalCJOJQJ_HmH sH tH 2@2 Heading 1$@&5\<A@< Default Paragraph Font:@: Header$ !a$OJQJ, @, Footer  !<>@< Title$<@&a$ KHOJQJ$O!$ Style1OJQJ2O22 Paragraph#x`#&)@A& Page Number&OR& Author$a$JC@bJ Body Text Indent$`a$OJQJ>B@r> Body Text ]OJPJQJaJ> >f -)5C#)+0#*>9BC$&'*,.12@&5C%(-/:NP^rt344>::::::: !!t  /X2$uכ"2$hH\m1jH@ 0(  B S  ?>^un.v.34===>>>>>^uP+X+--34===>>>>>33Roko AndrecevicC:\My Documents\maroco.docRoko AndrecevicC:\My Documents\maroco.docRoko AndrecevicC:\My Documents\maroco.docRoko AndrecevicC:\My Documents\maroco.docRoko AndrecevicC:\My Documents\maroco.docRoko AndrecevicC:\My Documents\maroco.docRoko AndrecevicC:\My Documents\maroco.docRoko AndrecevicC:\My Documents\maroco.docRoko AndrecevicC:\My Documents\maroco.doc Mijo VranjeaD:\slanost\maroco4.doc h ec<Hhh^h`o(.^`o(.^`.pLp^p`L.@ @ ^@ `.^`.L^`L.^`.^`.PLP^P`L.ec< h@$t<> @G:Times New Roman5Symbol3& :Arial3TimesqCentury SchoolbookBookman Old StylemMNew Century SchlbkTimes New Roman"1hEsEsYjLf3l!0d>qEstimatimg Aquifer Salinity from Airborne Electromagnetic Surveys: Example from Everglades National Park, FloridaDVF Mijo VranjeardDocWord.Document.89q