Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 985854

Introducing of modeling techniques in the research of POPs in breast milk–A pilot study


Jovanović, Gordana; Herceg Romanić, Snježana; Stojić, Andreja; Klinčić, Darija; Matek Sarić, Marijana; Grzunov Letinić, Judita; Popović, Aleksandar
Introducing of modeling techniques in the research of POPs in breast milk–A pilot study // Ecotoxicology and environmental safety, 172 (2019), 341-347 doi:10.1016/j.ecoenv.2019.01.087 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 985854 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Introducing of modeling techniques in the research of POPs in breast milk–A pilot study

Autori
Jovanović, Gordana ; Herceg Romanić, Snježana ; Stojić, Andreja ; Klinčić, Darija ; Matek Sarić, Marijana ; Grzunov Letinić, Judita ; Popović, Aleksandar

Izvornik
Ecotoxicology and environmental safety (0147-6513) 172 (2019); 341-347

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
Persistent organic pollutants (POPs) ; Parity ; Age ; Feature selection ; Machine learning ; Unmix

Sažetak
This study used advanced statistical and machine learning methods to investigate organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) in breast milk, assuming that in a complex biological mixture, the pollutants emitted from the same source or with similar properties are statistically interrelated and possibly exhibit non-linear dynamics. The elaborated analyses such as Unmix source apportionment characterized individual source groups, while guided regularized random forest indicated the pollutant dependence on the orthochlorine atom attached to the congener's phenyl ring and mother's age. Mutual associations among PCBs were further discussed, but the results implied they were mostly not related to child delivery. PCB congeners −153, −180, −170, −118, −156, −105, and −138 appeared to be compounds of the outmost importance for mutual prediction with reference to their interrelations regarding chemical structure and metabolic processes in the mother's body. Finally, machine learning methods, which provided prediction relative errors lower than 30% and correlation coefficients higher than 0.90, suggested a possible strong non-linear relationship among the pollutants and consequently, the complexity of their pathways in the breast milk.

Izvorni jezik
Engleski

Znanstvena područja
Javno zdravstvo i zdravstvena zaštita



POVEZANOST RADA


Projekti:
IP-2013-11-8366 - Organska zagađivala u okolišu - markeri i biomarkeri toksičnosti (OPENTOX) (Želježić, Davor, HRZZ - 2013-11) ( CroRIS)

Ustanove:
Institut za medicinska istraživanja i medicinu rada, Zagreb,
Sveučilište u Zadru

Poveznice na cjeloviti tekst rada:

doi www.sciencedirect.com www.sciencedirect.com

Citiraj ovu publikaciju:

Jovanović, Gordana; Herceg Romanić, Snježana; Stojić, Andreja; Klinčić, Darija; Matek Sarić, Marijana; Grzunov Letinić, Judita; Popović, Aleksandar
Introducing of modeling techniques in the research of POPs in breast milk–A pilot study // Ecotoxicology and environmental safety, 172 (2019), 341-347 doi:10.1016/j.ecoenv.2019.01.087 (međunarodna recenzija, članak, znanstveni)
Jovanović, G., Herceg Romanić, S., Stojić, A., Klinčić, D., Matek Sarić, M., Grzunov Letinić, J. & Popović, A. (2019) Introducing of modeling techniques in the research of POPs in breast milk–A pilot study. Ecotoxicology and environmental safety, 172, 341-347 doi:10.1016/j.ecoenv.2019.01.087.
@article{article, author = {Jovanovi\'{c}, Gordana and Herceg Romani\'{c}, Snje\v{z}ana and Stoji\'{c}, Andreja and Klin\v{c}i\'{c}, Darija and Matek Sari\'{c}, Marijana and Grzunov Letini\'{c}, Judita and Popovi\'{c}, Aleksandar}, year = {2019}, pages = {341-347}, DOI = {10.1016/j.ecoenv.2019.01.087}, keywords = {Persistent organic pollutants (POPs), Parity, Age, Feature selection, Machine learning, Unmix}, journal = {Ecotoxicology and environmental safety}, doi = {10.1016/j.ecoenv.2019.01.087}, volume = {172}, issn = {0147-6513}, title = {Introducing of modeling techniques in the research of POPs in breast milk–A pilot study}, keyword = {Persistent organic pollutants (POPs), Parity, Age, Feature selection, Machine learning, Unmix} }
@article{article, author = {Jovanovi\'{c}, Gordana and Herceg Romani\'{c}, Snje\v{z}ana and Stoji\'{c}, Andreja and Klin\v{c}i\'{c}, Darija and Matek Sari\'{c}, Marijana and Grzunov Letini\'{c}, Judita and Popovi\'{c}, Aleksandar}, year = {2019}, pages = {341-347}, DOI = {10.1016/j.ecoenv.2019.01.087}, keywords = {Persistent organic pollutants (POPs), Parity, Age, Feature selection, Machine learning, Unmix}, journal = {Ecotoxicology and environmental safety}, doi = {10.1016/j.ecoenv.2019.01.087}, volume = {172}, issn = {0147-6513}, title = {Introducing of modeling techniques in the research of POPs in breast milk–A pilot study}, keyword = {Persistent organic pollutants (POPs), Parity, Age, Feature selection, Machine learning, Unmix} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus
  • MEDLINE


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font