Pregled bibliografske jedinice broj: 984377
Extending Redescription Mining to Multiple Views
Extending Redescription Mining to Multiple Views // 21st International Conference, DS 2018, Limassol, Cyprus, October 29–31, 2018, Proceedings / Soldatova, Larisa ; Vanschoren, Joaquin ; Papadopoulos, George ; Ceci, Michelangelo (ur.).
Cham: Springer, 2018. str. 292-307 doi:10.1007/978-3-030-01771-2_19
CROSBI ID: 984377 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Extending Redescription Mining to Multiple Views
Autori
Mihelčić, Matej ; Džeroski, Sašo ; Šmuc, Tomislav
Vrsta, podvrsta i kategorija rada
Poglavlja u knjigama, znanstveni
Knjiga
21st International Conference, DS 2018, Limassol, Cyprus, October 29–31, 2018, Proceedings
Urednik/ci
Soldatova, Larisa ; Vanschoren, Joaquin ; Papadopoulos, George ; Ceci, Michelangelo
Izdavač
Springer
Grad
Cham
Godina
2018
Raspon stranica
292-307
ISBN
978-3-030-01771-2
ISSN
0302-9743
Ključne riječi
Redescription mining CLUS-RM ; Predictive Clustering trees ; World countries ; River quality
Sažetak
Redescription mining is a data mining task that discovers re-descriptions of different subsets of entities from available data. Locating such re-descriptions is important in many scientific disciplines because it allows detecting different types of associations including synergy of different attributes of interest. There exist a number of redescription mining algorithms, however they are all restricted to use of one or maximally two disjoint sets of attributes (views) to re-describe different subsets of entities. The main reasons for this limitation are computational complexity and potentially large increase in number of produced patterns, in multi-view setting, during redescription mining. In this work we present an algorithm that allows mining redescriptions from multiple views using the CLUS-RM algorithm. Presented algorithm efficiently solves aforementioned problems. Its computational complexity, with respect to attribute operations, increases linearly with the increase of number of views and we present techniques to handle large number of produced redescriptions during redescription mining step.
Izvorni jezik
Engleski
Znanstvena područja
Računarstvo
POVEZANOST RADA
Projekti:
HRZZ-IP-2013-11-9623 - Postupci strojnog učenja za dubinsku analizu složenih struktura podataka (DescriptiveInduction) (Gamberger, Dragan, HRZZ - 2013-11) ( CroRIS)
Ustanove:
Institut "Ruđer Bošković", Zagreb
Citiraj ovu publikaciju:
Časopis indeksira:
- Scopus