Pregled bibliografske jedinice broj: 983804
L0 Motivated Low-Rank Sparse Subspace Clustering
l0 Motivated Low-Rank Sparse Subspace Clustering // IEEE Transactions on Cybernetics, 50 (2020), 4; 1711-1725 doi:10.1109/TCYB.2018.2883566 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 983804 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
L0 Motivated Low-Rank Sparse Subspace Clustering
Autori
Brbić, Maria ; Kopriva, Ivica
Izvornik
IEEE Transactions on Cybernetics (2168-2267) 50
(2020), 4;
1711-1725
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
Alternating direction method of multipliers (ADMMs) ; generalization of the minimax-concave (GMC) penalty ; L0 regularization ; low-rank ; sparsity ; subspace clustering
Sažetak
In many applications, high-dimensional data points can be well represented by low-dimensional subspaces. To identify the subspaces, it is important to capture a global and local structure of the data which is achieved by imposing low-rank and sparseness constraints on the data representation matrix. In low-rank sparse subspace clustering (LRSSC), nuclear and L1-norms are used to measure rank and sparsity. However, the use of nuclear and L1-norms leads to an overpenalized problem and only approximates the original problem. In this paper, we propose two L0 quasi-norm-based regularizations. First, this paper presents regularization based on multivariate generalization of minimax-concave penalty (GMC-LRSSC), which contains the global minimizers of a L0 quasi-norm regularized objective. Afterward, we introduce the Schatten-0 (S0) and L0-regularized objective and approximate the proximal map of the joint solution using a proximal average method (S0/L0-LRSSC). The resulting nonconvex optimization problems are solved using an alternating direction method of multipliers with established convergence conditions of both algorithms. Results obtained on synthetic and four real-world datasets show the effectiveness of GMC-LRSSC and S0/L0-LRSSC when compared to state-of-the-art methods.
Izvorni jezik
Engleski
Znanstvena područja
Matematika, Računarstvo
POVEZANOST RADA
Projekti:
HRZZ-IP-2016-06-5235 - Strukturne dekompozicije empirijskih podataka za računalno potpomognutu dijagnostiku bolesti (DEDAD) (Kopriva, Ivica, HRZZ - 2016-06) ( CroRIS)
Ustanove:
Institut "Ruđer Bošković", Zagreb
Poveznice na cjeloviti tekst rada:
Pristup cjelovitom tekstu rada doi fulir.irb.hr arxiv.org doi.org ieeexplore.ieee.orgCitiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus
- MEDLINE