Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 983804

L0 Motivated Low-Rank Sparse Subspace Clustering


Brbić, Maria; Kopriva, Ivica
l0 Motivated Low-Rank Sparse Subspace Clustering // IEEE Transactions on Cybernetics, 50 (2020), 4; 1711-1725 doi:10.1109/TCYB.2018.2883566 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 983804 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
L0 Motivated Low-Rank Sparse Subspace Clustering

Autori
Brbić, Maria ; Kopriva, Ivica

Izvornik
IEEE Transactions on Cybernetics (2168-2267) 50 (2020), 4; 1711-1725

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
Alternating direction method of multipliers (ADMMs) ; generalization of the minimax-concave (GMC) penalty ; L0 regularization ; low-rank ; sparsity ; subspace clustering

Sažetak
In many applications, high-dimensional data points can be well represented by low-dimensional subspaces. To identify the subspaces, it is important to capture a global and local structure of the data which is achieved by imposing low-rank and sparseness constraints on the data representation matrix. In low-rank sparse subspace clustering (LRSSC), nuclear and L1-norms are used to measure rank and sparsity. However, the use of nuclear and L1-norms leads to an overpenalized problem and only approximates the original problem. In this paper, we propose two L0 quasi-norm-based regularizations. First, this paper presents regularization based on multivariate generalization of minimax-concave penalty (GMC-LRSSC), which contains the global minimizers of a L0 quasi-norm regularized objective. Afterward, we introduce the Schatten-0 (S0) and L0-regularized objective and approximate the proximal map of the joint solution using a proximal average method (S0/L0-LRSSC). The resulting nonconvex optimization problems are solved using an alternating direction method of multipliers with established convergence conditions of both algorithms. Results obtained on synthetic and four real-world datasets show the effectiveness of GMC-LRSSC and S0/L0-LRSSC when compared to state-of-the-art methods.

Izvorni jezik
Engleski

Znanstvena područja
Matematika, Računarstvo



POVEZANOST RADA


Projekti:
HRZZ-IP-2016-06-5235 - Strukturne dekompozicije empirijskih podataka za računalno potpomognutu dijagnostiku bolesti (DEDAD) (Kopriva, Ivica, HRZZ - 2016-06) ( CroRIS)

Ustanove:
Institut "Ruđer Bošković", Zagreb

Profili:

Avatar Url Ivica Kopriva (autor)

Avatar Url Maria Brbić (autor)

Citiraj ovu publikaciju:

Brbić, Maria; Kopriva, Ivica
l0 Motivated Low-Rank Sparse Subspace Clustering // IEEE Transactions on Cybernetics, 50 (2020), 4; 1711-1725 doi:10.1109/TCYB.2018.2883566 (međunarodna recenzija, članak, znanstveni)
Brbić, M. & Kopriva, I. (2020) l0 Motivated Low-Rank Sparse Subspace Clustering. IEEE Transactions on Cybernetics, 50 (4), 1711-1725 doi:10.1109/TCYB.2018.2883566.
@article{article, author = {Brbi\'{c}, Maria and Kopriva, Ivica}, year = {2020}, pages = {1711-1725}, DOI = {10.1109/TCYB.2018.2883566}, keywords = {Alternating direction method of multipliers (ADMMs), generalization of the minimax-concave (GMC) penalty, L0 regularization, low-rank, sparsity, subspace clustering}, journal = {IEEE Transactions on Cybernetics}, doi = {10.1109/TCYB.2018.2883566}, volume = {50}, number = {4}, issn = {2168-2267}, title = {l0 Motivated Low-Rank Sparse Subspace Clustering}, keyword = {Alternating direction method of multipliers (ADMMs), generalization of the minimax-concave (GMC) penalty, L0 regularization, low-rank, sparsity, subspace clustering} }
@article{article, author = {Brbi\'{c}, Maria and Kopriva, Ivica}, year = {2020}, pages = {1711-1725}, DOI = {10.1109/TCYB.2018.2883566}, keywords = {Alternating direction method of multipliers (ADMMs), generalization of the minimax-concave (GMC) penalty, L0 regularization, low-rank, sparsity, subspace clustering}, journal = {IEEE Transactions on Cybernetics}, doi = {10.1109/TCYB.2018.2883566}, volume = {50}, number = {4}, issn = {2168-2267}, title = {l0 Motivated Low-Rank Sparse Subspace Clustering}, keyword = {Alternating direction method of multipliers (ADMMs), generalization of the minimax-concave (GMC) penalty, L0 regularization, low-rank, sparsity, subspace clustering} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus
  • MEDLINE


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font