Pregled bibliografske jedinice broj: 983303
Building a labeled dataset for recognition of handball actions using mask R-CNN and STIPS
Building a labeled dataset for recognition of handball actions using mask R-CNN and STIPS // 2018 7th European Workshop on Visual Information Processing (EUVIP)
Tampere, Finska: Institute of Electrical and Electronics Engineers (IEEE), 2018. str. 1-6 doi:10.1109/euvip.2018.8611642 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 983303 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Building a labeled dataset for recognition of handball actions using mask R-CNN and STIPS
Autori
Ivašić-Kos, Marina ; Pobar, Miran
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
2018 7th European Workshop on Visual Information Processing (EUVIP)
/ - : Institute of Electrical and Electronics Engineers (IEEE), 2018, 1-6
ISBN
978-1-5386-6897-9
Skup
7th European Workshop on Visual Information Processing (EUVIP 2018)
Mjesto i datum
Tampere, Finska, 26.11.2018. - 28.11.2018
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
object detectors , sports scenes , Mask R-CNN , spatio-temporal interest point-STIP , action recognition database
Sažetak
Building successful machine learning models depends on large amounts of training data that often needs to be labelled manually. We propose a method to efficiently build an action recognition dataset in the handball domain, focusing on minimizing the manual labor required to label the individual players performing the chosen actions. The method uses existing deep learning object recognition methods for player detection and combines the obtained location information with a player activity measure based on spatio-temporal interest points to track players that are performing the currently relevant action, here called active players. The method was successfully used on a challenging dataset of real-world handball practice videos, where the leading active player was correctly tracked and labeled in 84 % of cases.
Izvorni jezik
Engleski
Znanstvena područja
Računarstvo, Informacijske i komunikacijske znanosti
POVEZANOST RADA
Projekti:
HRZZ-IP-2016-06-8345 - Automatsko raspoznavanje akcija i aktivnosti u multimedijalnom sadržaju iz domene sporta (RAASS) (Ivašić Kos, Marina, HRZZ - 2016-06) ( CroRIS)
Ustanove:
Fakultet informatike i digitalnih tehnologija, Rijeka
Citiraj ovu publikaciju:
Časopis indeksira:
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- Conference Proceedings Citation Index - Science (CPCI-S)
- Scopus