Pregled bibliografske jedinice broj: 983300
Mask R-CNN and Optical Flow Based Method for Detection and Marking of Handball Actions
Mask R-CNN and Optical Flow Based Method for Detection and Marking of Handball Actions // 2018 11th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI) / Li, W ; Li, Q ; Wang, L (ur.).
Peking, Kina: Institute of Electrical and Electronics Engineers (IEEE), 2018. 8633201, 6 doi:10.1109/cisp-bmei.2018.8633201 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 983300 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Mask R-CNN and Optical Flow Based Method for
Detection and Marking of Handball Actions
Autori
Pobar, Miran ; Ivašić-Kos, Marina
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
2018 11th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI)
/ Li, W ; Li, Q ; Wang, L - : Institute of Electrical and Electronics Engineers (IEEE), 2018
ISBN
978-1-5386-7604-2
Skup
11th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI 2018)
Mjesto i datum
Peking, Kina, 13.10.2018. - 15.10.2018
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
object detectors ; sports scenes ; Mask R-CNN ; optical flow ; action recognition database
Sažetak
To build a successful supervised learning model for action recognition a large amount of training data needs to be labeled first. Labeling is normally done manually and it is a tedious and time-consuming task, especially in the case of video footage, when each individual athlete performing a given action should be labeled. To minimize the manual labor, we propose a Mask R-CNN and Optical flow based method to determine the active players who perform a given action among all players presented on the scene. The Mask R-CNN is a deep learning object recognition method used for player detection and optical flow measures player activity. Combining both methods ensures tracking and labeling of active players in handball video sequences. The method was successfully tested on a dataset of handball practice videos recorded in the wild.
Izvorni jezik
Engleski
Znanstvena područja
Računarstvo, Informacijske i komunikacijske znanosti
POVEZANOST RADA
Projekti:
HRZZ-IP-2016-06-8345 - Automatsko raspoznavanje akcija i aktivnosti u multimedijalnom sadržaju iz domene sporta (RAASS) (Ivašić Kos, Marina, HRZZ - 2016-06) ( CroRIS)
Ustanove:
Fakultet informatike i digitalnih tehnologija, Rijeka
Citiraj ovu publikaciju:
Časopis indeksira:
- Web of Science Core Collection (WoSCC)
- Conference Proceedings Citation Index - Social Sciences & Humanities (CPCI-SSH)
- Scopus