Pregled bibliografske jedinice broj: 980942
Normalized difference set tiling conjecture
Normalized difference set tiling conjecture // Journal of combinatorial designs, 26 (2018), 10; 505-513 doi:10.1002/jcd.21606 (međunarodna recenzija, članak, ostalo)
CROSBI ID: 980942 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Normalized difference set tiling conjecture
Autori
Tabak, Kristijan
Izvornik
Journal of combinatorial designs (1063-8539) 26
(2018), 10;
505-513
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, ostalo
Ključne riječi
character ; difference set ; tiling
Sažetak
A difference set tiling in a group 𝐺 is a collection of its Q2 (𝑣, 𝑘, 𝜆) difference sets that partition 𝐺 ⧵ {; ; 1}; ; . It can exist in an abelian as well as in a nonabelian group. A tiling is normalized if a product of elements in each difference set equals 1. All known cases in abelian groups are normalized. Ćustić, Krčadinac, and Zhou made a conjecture that this is necessary. We will call it a normalized tiling conjecture (NTC). Using character theory, we prove that NTC is true for (𝑣, 𝑘, 1) where 𝑣 is odd. Also, if (𝑣, 𝑘, 𝜆) difference set has a multiplier, we prove that NTC is also true.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Projekti:
HRZZ-IP-2013-11-1637 - Kodovi i s njima povezane kombinatoričke strukture (CoCoS) (Crnković, Dean, HRZZ - 2013-11) ( CroRIS)
Ustanove:
RIT Croatia, Dubrovnik
Profili:
Kristijan Tabak
(autor)
Citiraj ovu publikaciju:
Časopis indeksira:
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus