Pregled bibliografske jedinice broj: 980512
L^p(G)-Linear Independence and p-Zero Divisors
l^p(G)-Linear Independence and p-Zero Divisors // Mediterranean journal of mathematics, 15 (2018), 3; 120, 19 doi:10.1007/s00009-018-1167-z (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 980512 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
L^p(G)-Linear Independence and p-Zero Divisors
Autori
Slamić, Ivana
Izvornik
Mediterranean journal of mathematics (1660-5446) 15
(2018), 3;
120, 19
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
bracket function ; cyclic vector ; dual integrable representation ; l^p(G) -linear independence ; zero divisor
Sažetak
Let T be a dual integrable representation of a countable discrete LCA group G, acting on a Hilbert space H . We consider the problem of characterizing l^p(G) -linear independence ( p≠2 ) of the system {; ; ; T_kψ:k∈G}; ; ; for the given ψ∈H , which we previously studied in the context of the integer translates of a square integrable function. The extensions of the known results for translates to this setting are obtained using a slightly different approach, through which we show that, under certain conditions, this problem is related to the ‘Wiener’s closure of translates’ problem and the problem of the existence of p-zero divisors, arising around the zero divisor conjecture in algebra. Using this connection, we also obtain several improvements for the case of the integer translates.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Ustanove:
Sveučilište u Rijeci, Fakultet za matematiku
Profili:
Ivana Slamić
(autor)
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus